chong.zhang
update
96fe5d9
from typing import List
import torch
import torchaudio
from torch import nn
import math
# from inspiremusic.wavtokenizer.decoder.modules import safe_log
from inspiremusic.wavtokenizer.encoder.modules import SEANetEncoder, SEANetDecoder
from inspiremusic.wavtokenizer.encoder import EncodecModel
from inspiremusic.wavtokenizer.encoder.quantization import ResidualVectorQuantizer
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
"""
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
Args:
x (Tensor): Input tensor.
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
Returns:
Tensor: Element-wise logarithm of the input tensor with clipping applied.
"""
return torch.log(torch.clip(x, min=clip_val))
def symlog(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * torch.log1p(x.abs())
def symexp(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * (torch.exp(x.abs()) - 1)
class FeatureExtractor(nn.Module):
"""Base class for feature extractors."""
def forward(self, audio: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Extract features from the given audio.
Args:
audio (Tensor): Input audio waveform.
Returns:
Tensor: Extracted features of shape (B, C, L), where B is the batch size,
C denotes output features, and L is the sequence length.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class MelSpectrogramFeatures(FeatureExtractor):
def __init__(self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding="center"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.mel_spec = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=n_mels,
center=padding == "center",
power=1,
)
def forward(self, audio, **kwargs):
if self.padding == "same":
pad = self.mel_spec.win_length - self.mel_spec.hop_length
audio = torch.nn.functional.pad(audio, (pad // 2, pad // 2), mode="reflect")
mel = self.mel_spec(audio)
features = safe_log(mel)
return features
class EncodecFeatures(FeatureExtractor):
def __init__(
self,
encodec_model: str = "encodec_24khz",
bandwidths: List[float] = [1.5, 3.0, 6.0, 12.0],
train_codebooks: bool = False,
num_quantizers: int = 1,
dowmsamples: List[int] = [6, 5, 5, 4],
vq_bins: int = 16384,
vq_kmeans: int = 800,
):
super().__init__()
# breakpoint()
self.frame_rate = 25 # not use
# n_q = int(bandwidths[-1]*1000/(math.log2(2048) * self.frame_rate))
n_q = num_quantizers # important
encoder = SEANetEncoder(causal=False, n_residual_layers=1, norm='weight_norm', pad_mode='reflect', lstm=2,
dimension=512, channels=1, n_filters=32, ratios=dowmsamples, activation='ELU',
kernel_size=7, residual_kernel_size=3, last_kernel_size=7, dilation_base=2,
true_skip=False, compress=2)
decoder = SEANetDecoder(causal=False, n_residual_layers=1, norm='weight_norm', pad_mode='reflect', lstm=2,
dimension=512, channels=1, n_filters=32, ratios=[8, 5, 4, 2], activation='ELU',
kernel_size=7, residual_kernel_size=3, last_kernel_size=7, dilation_base=2,
true_skip=False, compress=2)
quantizer = ResidualVectorQuantizer(dimension=512, n_q=n_q, bins=vq_bins, kmeans_iters=vq_kmeans,
decay=0.99, kmeans_init=True)
# breakpoint()
if encodec_model == "encodec_24khz":
self.encodec = EncodecModel(encoder=encoder, decoder=decoder, quantizer=quantizer,
target_bandwidths=bandwidths, sample_rate=24000, channels=1)
else:
raise ValueError(
f"Unsupported encodec_model: {encodec_model}. Supported options are 'encodec_24khz'."
)
for param in self.encodec.parameters():
param.requires_grad = True
# self.num_q = n_q
# codebook_weights = torch.cat([vq.codebook for vq in self.encodec.quantizer.vq.layers[: self.num_q]], dim=0)
# self.codebook_weights = torch.nn.Parameter(codebook_weights, requires_grad=train_codebooks)
self.bandwidths = bandwidths
# @torch.no_grad()
# def get_encodec_codes(self, audio):
# audio = audio.unsqueeze(1)
# emb = self.encodec.encoder(audio)
# codes = self.encodec.quantizer.encode(emb, self.encodec.frame_rate, self.encodec.bandwidth)
# return codes
def forward(self, audio: torch.Tensor, bandwidth_id: torch.Tensor = torch.tensor(0)):
if self.training:
self.encodec.train()
audio = audio.unsqueeze(1) # audio(16,24000)
# breakpoint()
emb = self.encodec.encoder(audio)
q_res = self.encodec.quantizer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id])
quantized = q_res.quantized
codes = q_res.codes
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75)
return quantized, codes, commit_loss
# codes = self.get_encodec_codes(audio)
# # Instead of summing in the loop, it stores subsequent VQ dictionaries in a single `self.codebook_weights`
# # with offsets given by the number of bins, and finally summed in a vectorized operation.
# offsets = torch.arange(
# 0, self.encodec.quantizer.bins * len(codes), self.encodec.quantizer.bins, device=audio.device
# )
# embeddings_idxs = codes + offsets.view(-1, 1, 1)
# features = torch.nn.functional.embedding(embeddings_idxs, self.codebook_weights).sum(dim=0)
# return features.transpose(1, 2)
def infer(self, audio: torch.Tensor, bandwidth_id: torch.Tensor):
if self.training:
self.encodec.train()
audio = audio.unsqueeze(1) # audio(16,24000)
emb = self.encodec.encoder(audio)
q_res = self.encodec.quantizer.infer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id])
quantized = q_res.quantized
codes = q_res.codes
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75)
return quantized, codes, commit_loss
def _infer(self, audio: torch.Tensor, bandwidth_id: torch.Tensor = torch.tensor(0)):
if self.training:
self.encodec.train()
audio = audio.unsqueeze(1) # audio(16,24000)
emb = self.encodec.encoder(audio)
q_res = self.encodec.quantizer.infer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id])
quantized = q_res.quantized
codes = q_res.codes
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75)
return quantized, codes, commit_loss