Spaces:
Running
on
Zero
Running
on
Zero
from typing import List | |
import torch | |
import torchaudio | |
from torch import nn | |
import math | |
# from inspiremusic.wavtokenizer.decoder.modules import safe_log | |
from inspiremusic.wavtokenizer.encoder.modules import SEANetEncoder, SEANetDecoder | |
from inspiremusic.wavtokenizer.encoder import EncodecModel | |
from inspiremusic.wavtokenizer.encoder.quantization import ResidualVectorQuantizer | |
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: | |
""" | |
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. | |
Args: | |
x (Tensor): Input tensor. | |
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. | |
Returns: | |
Tensor: Element-wise logarithm of the input tensor with clipping applied. | |
""" | |
return torch.log(torch.clip(x, min=clip_val)) | |
def symlog(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * torch.log1p(x.abs()) | |
def symexp(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * (torch.exp(x.abs()) - 1) | |
class FeatureExtractor(nn.Module): | |
"""Base class for feature extractors.""" | |
def forward(self, audio: torch.Tensor, **kwargs) -> torch.Tensor: | |
""" | |
Extract features from the given audio. | |
Args: | |
audio (Tensor): Input audio waveform. | |
Returns: | |
Tensor: Extracted features of shape (B, C, L), where B is the batch size, | |
C denotes output features, and L is the sequence length. | |
""" | |
raise NotImplementedError("Subclasses must implement the forward method.") | |
class MelSpectrogramFeatures(FeatureExtractor): | |
def __init__(self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding="center"): | |
super().__init__() | |
if padding not in ["center", "same"]: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
self.padding = padding | |
self.mel_spec = torchaudio.transforms.MelSpectrogram( | |
sample_rate=sample_rate, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
n_mels=n_mels, | |
center=padding == "center", | |
power=1, | |
) | |
def forward(self, audio, **kwargs): | |
if self.padding == "same": | |
pad = self.mel_spec.win_length - self.mel_spec.hop_length | |
audio = torch.nn.functional.pad(audio, (pad // 2, pad // 2), mode="reflect") | |
mel = self.mel_spec(audio) | |
features = safe_log(mel) | |
return features | |
class EncodecFeatures(FeatureExtractor): | |
def __init__( | |
self, | |
encodec_model: str = "encodec_24khz", | |
bandwidths: List[float] = [1.5, 3.0, 6.0, 12.0], | |
train_codebooks: bool = False, | |
num_quantizers: int = 1, | |
dowmsamples: List[int] = [6, 5, 5, 4], | |
vq_bins: int = 16384, | |
vq_kmeans: int = 800, | |
): | |
super().__init__() | |
# breakpoint() | |
self.frame_rate = 25 # not use | |
# n_q = int(bandwidths[-1]*1000/(math.log2(2048) * self.frame_rate)) | |
n_q = num_quantizers # important | |
encoder = SEANetEncoder(causal=False, n_residual_layers=1, norm='weight_norm', pad_mode='reflect', lstm=2, | |
dimension=512, channels=1, n_filters=32, ratios=dowmsamples, activation='ELU', | |
kernel_size=7, residual_kernel_size=3, last_kernel_size=7, dilation_base=2, | |
true_skip=False, compress=2) | |
decoder = SEANetDecoder(causal=False, n_residual_layers=1, norm='weight_norm', pad_mode='reflect', lstm=2, | |
dimension=512, channels=1, n_filters=32, ratios=[8, 5, 4, 2], activation='ELU', | |
kernel_size=7, residual_kernel_size=3, last_kernel_size=7, dilation_base=2, | |
true_skip=False, compress=2) | |
quantizer = ResidualVectorQuantizer(dimension=512, n_q=n_q, bins=vq_bins, kmeans_iters=vq_kmeans, | |
decay=0.99, kmeans_init=True) | |
# breakpoint() | |
if encodec_model == "encodec_24khz": | |
self.encodec = EncodecModel(encoder=encoder, decoder=decoder, quantizer=quantizer, | |
target_bandwidths=bandwidths, sample_rate=24000, channels=1) | |
else: | |
raise ValueError( | |
f"Unsupported encodec_model: {encodec_model}. Supported options are 'encodec_24khz'." | |
) | |
for param in self.encodec.parameters(): | |
param.requires_grad = True | |
# self.num_q = n_q | |
# codebook_weights = torch.cat([vq.codebook for vq in self.encodec.quantizer.vq.layers[: self.num_q]], dim=0) | |
# self.codebook_weights = torch.nn.Parameter(codebook_weights, requires_grad=train_codebooks) | |
self.bandwidths = bandwidths | |
# @torch.no_grad() | |
# def get_encodec_codes(self, audio): | |
# audio = audio.unsqueeze(1) | |
# emb = self.encodec.encoder(audio) | |
# codes = self.encodec.quantizer.encode(emb, self.encodec.frame_rate, self.encodec.bandwidth) | |
# return codes | |
def forward(self, audio: torch.Tensor, bandwidth_id: torch.Tensor = torch.tensor(0)): | |
if self.training: | |
self.encodec.train() | |
audio = audio.unsqueeze(1) # audio(16,24000) | |
# breakpoint() | |
emb = self.encodec.encoder(audio) | |
q_res = self.encodec.quantizer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id]) | |
quantized = q_res.quantized | |
codes = q_res.codes | |
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75) | |
return quantized, codes, commit_loss | |
# codes = self.get_encodec_codes(audio) | |
# # Instead of summing in the loop, it stores subsequent VQ dictionaries in a single `self.codebook_weights` | |
# # with offsets given by the number of bins, and finally summed in a vectorized operation. | |
# offsets = torch.arange( | |
# 0, self.encodec.quantizer.bins * len(codes), self.encodec.quantizer.bins, device=audio.device | |
# ) | |
# embeddings_idxs = codes + offsets.view(-1, 1, 1) | |
# features = torch.nn.functional.embedding(embeddings_idxs, self.codebook_weights).sum(dim=0) | |
# return features.transpose(1, 2) | |
def infer(self, audio: torch.Tensor, bandwidth_id: torch.Tensor): | |
if self.training: | |
self.encodec.train() | |
audio = audio.unsqueeze(1) # audio(16,24000) | |
emb = self.encodec.encoder(audio) | |
q_res = self.encodec.quantizer.infer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id]) | |
quantized = q_res.quantized | |
codes = q_res.codes | |
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75) | |
return quantized, codes, commit_loss | |
def _infer(self, audio: torch.Tensor, bandwidth_id: torch.Tensor = torch.tensor(0)): | |
if self.training: | |
self.encodec.train() | |
audio = audio.unsqueeze(1) # audio(16,24000) | |
emb = self.encodec.encoder(audio) | |
q_res = self.encodec.quantizer.infer(emb, self.frame_rate, bandwidth=self.bandwidths[bandwidth_id]) | |
quantized = q_res.quantized | |
codes = q_res.codes | |
commit_loss = q_res.penalty # codes(8,16,75),features(16,128,75) | |
return quantized, codes, commit_loss |