Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple, Any, Union, Dict | |
import torch | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from torch import nn | |
from inspiremusic.wavtokenizer.decoder.feature_extractors import FeatureExtractor, EncodecFeatures | |
from inspiremusic.wavtokenizer.decoder.heads import FourierHead | |
from inspiremusic.wavtokenizer.decoder.models import Backbone | |
from inspiremusic.wavtokenizer.decoder.discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator | |
def instantiate_class(args: Union[Any, Tuple[Any, ...]], init: Dict[str, Any]) -> Any: | |
"""Instantiates a class with the given args and init. | |
Args: | |
args: Positional arguments required for instantiation. | |
init: Dict of the form {"class_path":...,"init_args":...}. | |
Returns: | |
The instantiated class object. | |
""" | |
kwargs = init.get("init_args", {}) | |
if not isinstance(args, tuple): | |
args = (args,) | |
class_module, class_name = init["class_path"].rsplit(".", 1) | |
module = __import__(class_module, fromlist=[class_name]) | |
args_class = getattr(module, class_name) | |
return args_class(*args, **kwargs) | |
class WavTokenizer(nn.Module): | |
""" | |
The Vocos class represents a Fourier-based neural vocoder for audio synthesis. | |
This class is primarily designed for inference, with support for loading from pretrained | |
model checkpoints. It consists of three main components: a feature extractor, | |
a backbone, and a head. | |
""" | |
def __init__( | |
self, feature_extractor: FeatureExtractor, backbone: Backbone, head: FourierHead, | |
multiperioddisc: MultiPeriodDiscriminator, multiresddisc: MultiResolutionDiscriminator, | |
): | |
super().__init__() | |
self.feature_extractor = feature_extractor | |
self.backbone = backbone | |
self.head = head | |
self.multiperioddisc = multiperioddisc | |
self.multiresddisc = multiresddisc | |
def from_hparams0828(cls, config_path: str) -> "Vocos": | |
""" | |
Class method to create a new Vocos model instance from hyperparameters stored in a yaml configuration file. | |
""" | |
with open(config_path, "r") as f: | |
config = yaml.safe_load(f) | |
feature_extractor = instantiate_class(args=(), init=config['model']['init_args']["feature_extractor"]) | |
backbone = instantiate_class(args=(), init=config['model']['init_args']["backbone"]) | |
head = instantiate_class(args=(), init=config['model']['init_args']["head"]) | |
model = cls(feature_extractor=feature_extractor, backbone=backbone, head=head, | |
multiperioddisc=MultiPeriodDiscriminator(num_embeddings=4), | |
multiresddisc=MultiResolutionDiscriminator(num_embeddings=4)) | |
return model | |
def from_pretrained0828(self, config_path, model_path): | |
""" | |
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub. | |
""" | |
model = self.from_hparams0828(config_path) | |
state_dict_raw = torch.load(model_path, map_location="cpu")['state_dict'] | |
state_dict = dict() | |
for k, v in state_dict_raw.items(): | |
if k.startswith('backbone.') or k.startswith('head.') or k.startswith('feature_extractor.') \ | |
or k.startswith('multiperioddisc.') or k.startswith('multiresddisc.'): | |
state_dict[k] = v | |
# if isinstance(model.feature_extractor, EncodecFeatures): | |
# encodec_parameters = { | |
# "feature_extractor.encodec." + key: value | |
# for key, value in model.feature_extractor.encodec.state_dict().items() | |
# } | |
# state_dict.update(encodec_parameters) | |
model.load_state_dict(state_dict) | |
return model | |
def from_hparams0802(cls, config_path: str) -> "Vocos": | |
""" | |
Class method to create a new Vocos model instance from hyperparameters stored in a yaml configuration file. | |
""" | |
with open(config_path, "r") as f: | |
config = yaml.safe_load(f) | |
feature_extractor = instantiate_class(args=(), init=config['model']['init_args']["feature_extractor"]) | |
backbone = instantiate_class(args=(), init=config['model']['init_args']["backbone"]) | |
head = instantiate_class(args=(), init=config['model']['init_args']["head"]) | |
model = cls(feature_extractor=feature_extractor, backbone=backbone, head=head) | |
return model | |
def from_pretrained0802(self, config_path, model_path): | |
""" | |
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub. | |
""" | |
model = self.from_hparams0802(config_path) | |
state_dict_raw = torch.load(model_path, map_location="cpu")['state_dict'] | |
state_dict = dict() | |
for k, v in state_dict_raw.items(): | |
if k.startswith('backbone.') or k.startswith('head.') or k.startswith('feature_extractor.'): | |
state_dict[k] = v | |
# if isinstance(model.feature_extractor, EncodecFeatures): | |
# encodec_parameters = { | |
# "feature_extractor.encodec." + key: value | |
# for key, value in model.feature_extractor.encodec.state_dict().items() | |
# } | |
# state_dict.update(encodec_parameters) | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
def forward(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor: | |
""" | |
Method to run a copy-synthesis from audio waveform. The feature extractor first processes the audio input, | |
which is then passed through the backbone and the head to reconstruct the audio output. | |
Args: | |
audio_input (Tensor): The input tensor representing the audio waveform of shape (B, T), | |
where B is the batch size and L is the waveform length. | |
Returns: | |
Tensor: The output tensor representing the reconstructed audio waveform of shape (B, T). | |
""" | |
features, _, _ = self.feature_extractor(audio_input, **kwargs) # 0818 | |
audio_output = self.decode(features, **kwargs) | |
return audio_output | |
# 0818 | |
def encode(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor: | |
features, _, _ = self.feature_extractor(audio_input, **kwargs) | |
return features | |
def decode(self, features_input: torch.Tensor, **kwargs: Any) -> torch.Tensor: | |
""" | |
Method to decode audio waveform from already calculated features. The features input is passed through | |
the backbone and the head to reconstruct the audio output. | |
Args: | |
features_input (Tensor): The input tensor of features of shape (B, C, L), where B is the batch size, | |
C denotes the feature dimension, and L is the sequence length. | |
Returns: | |
Tensor: The output tensor representing the reconstructed audio waveform of shape (B, T). | |
""" | |
x = self.backbone(features_input, **kwargs) | |
audio_output = self.head(x) | |
return audio_output | |
def codes_to_features(self, codes: torch.Tensor) -> torch.Tensor: | |
""" | |
Transforms an input sequence of discrete tokens (codes) into feature embeddings using the feature extractor's | |
codebook weights. | |
Args: | |
codes (Tensor): The input tensor. Expected shape is (K, L) or (K, B, L), | |
where K is the number of codebooks, B is the batch size and L is the sequence length. | |
Returns: | |
Tensor: Features of shape (B, C, L), where B is the batch size, C denotes the feature dimension, | |
and L is the sequence length. | |
""" | |
assert isinstance( | |
self.feature_extractor, EncodecFeatures | |
), "Feature extractor should be an instance of EncodecFeatures" | |
if codes.dim() == 2: | |
codes = codes.unsqueeze(1) | |
n_bins = self.feature_extractor.encodec.quantizer.bins | |
offsets = torch.arange(0, n_bins * len(codes), n_bins, device=codes.device) | |
embeddings_idxs = codes + offsets.view(-1, 1, 1) | |
features = torch.nn.functional.embedding(embeddings_idxs, self.feature_extractor.codebook_weights).sum(dim=0) | |
features = features.transpose(1, 2) | |
return features | |