# Copyright (c) 2024 Alibaba Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import threading import time from contextlib import nullcontext import uuid from inspiremusic.music_tokenizer.vqvae import VQVAE from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer from torch.cuda.amp import autocast import logging import torch import os logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') class InspireMusicModel: def __init__(self, llm: torch.nn.Module, flow: torch.nn.Module, music_tokenizer: torch.nn.Module, wavtokenizer: torch.nn.Module, fast: bool = False, fp16: bool = True, ): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.llm = llm self.flow = flow self.music_tokenizer = music_tokenizer self.wavtokenizer = wavtokenizer self.fp16 = fp16 self.token_min_hop_len = 100 self.token_max_hop_len = 200 self.token_overlap_len = 20 # mel fade in out self.mel_overlap_len = 34 self.mel_window = np.hamming(2 * self.mel_overlap_len) # hift cache self.mel_cache_len = 20 self.source_cache_len = int(self.mel_cache_len * 256) # rtf and decoding related self.stream_scale_factor = 1 assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() self.lock = threading.Lock() # dict used to store session related variable self.music_token_dict = {} self.llm_end_dict = {} self.mel_overlap_dict = {} self.fast = fast self.generator = "hifi" def load(self, llm_model, flow_model, hift_model, wavtokenizer_model): if llm_model is not None: self.llm.load_state_dict(torch.load(llm_model, map_location=self.device)) self.llm.to(self.device).eval() else: self.llm = None if flow_model is not None: self.flow.load_state_dict(torch.load(flow_model, map_location=self.device)) self.flow.to(self.device).eval() if hift_model is not None: if ".pt" not in hift_model: self.music_tokenizer = VQVAE( hift_model + '/config.json', hift_model + '/model.pt', with_encoder=True) else: self.music_tokenizer = VQVAE(os.path.dirname(hift_model) + '/config.json', hift_model, with_encoder=True) self.music_tokenizer.to(self.device).eval() if wavtokenizer_model is not None: if ".pt" not in wavtokenizer_model: self.wavtokenizer = WavTokenizer.from_pretrained_feat( wavtokenizer_model + '/config.yaml', wavtokenizer_model + '/model.pt') else: self.wavtokenizer = WavTokenizer.from_pretrained_feat( os.path.dirname(wavtokenizer_model) + '/config.yaml', wavtokenizer_model ) self.wavtokenizer.to(self.device) def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model): assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model" llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device) self.llm.text_encoder = llm_text_encoder llm_llm = torch.jit.load(llm_llm_model) self.llm.llm = llm_llm flow_encoder = torch.jit.load(flow_encoder_model) self.flow.encoder = flow_encoder def load_onnx(self, flow_decoder_estimator_model): import onnxruntime option = onnxruntime.SessionOptions() option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL option.intra_op_num_threads = 1 providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] del self.flow.decoder.estimator self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers) def llm_job(self, text, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, uuid, duration_to_gen, task): with self.llm_context: local_res = [] with autocast(enabled=self.fp16): inference_kwargs = { 'text': text.to(self.device), 'text_len': torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), 'prompt_text': prompt_text.to(self.device), 'prompt_text_len': torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), 'prompt_audio_token': llm_prompt_audio_token.to(self.device), 'prompt_audio_token_len': torch.tensor([llm_prompt_audio_token.shape[1]], dtype=torch.int32).to(self.device), 'embeddings': embeddings, 'duration_to_gen': duration_to_gen, 'task': task } if audio_token is not None: inference_kwargs['audio_token'] = audio_token.to(self.device) else: inference_kwargs['audio_token'] = torch.Tensor([0]).to(self.device) if audio_token_len is not None: inference_kwargs['audio_token_len'] = audio_token_len.to(self.device) else: inference_kwargs['audio_token_len'] = torch.Tensor([0]).to(self.device) for i in self.llm.inference(**inference_kwargs): local_res.append(i) self.music_token_dict[uuid] = local_res self.llm_end_dict[uuid] = True # def token2wav(self, token, token_len, text, text_len, uuid, sample_rate, finalize=False): def token2wav(self, token, token_len, uuid, sample_rate, finalize=False, flow_cfg=None): # if self.flow is not None: # if isinstance(self.flow,MaskedDiffWithText): # codec_embed = self.flow.inference(token=token.to(self.device), # token_len=token_len.to(self.device), # text_token=text, # text_token_len=text_len, # ) # else: if flow_cfg is not None: codec_embed = self.flow.inference_cfg(token=token.to(self.device), token_len=token_len.to(self.device), sample_rate=sample_rate ) else: codec_embed = self.flow.inference(token=token.to(self.device), token_len=token_len.to(self.device), sample_rate=sample_rate ) # use music_tokenizer decoder wav = self.music_tokenizer.generator(codec_embed) wav = wav.squeeze(0).cpu().detach() return wav def acoustictoken2wav(self, token): # use music_tokenizer to generate waveform from token token = token.view(token.size(0), -1, 4) # codec = token.view(1, -1, 4) codec_embed = self.music_tokenizer.quantizer.embed(torch.tensor(token).long().to(self.device)).cuda() wav = self.music_tokenizer.generator(codec_embed) wav = wav.squeeze(0).cpu().detach() return wav def semantictoken2wav(self, token): # fast mode, use wavtokenizer decoder new_tensor = torch.tensor(token.to(self.device)).unsqueeze(0) features = self.wavtokenizer.codes_to_features(new_tensor) bandwidth_id = torch.tensor([0]).to(self.device) wav = self.wavtokenizer.to(self.device).decode(features, bandwidth_id=bandwidth_id) wav = wav.cpu().detach() return wav @torch.inference_mode() def inference(self, text, audio_token, audio_token_len, text_token, text_token_len, embeddings=None, prompt_text=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32), prompt_audio_feat=torch.zeros(1, 0, 80), sample_rate=48000, duration_to_gen = 30, task="continuation", trim = True, stream=False, **kwargs): # this_uuid is used to track variables related to this inference thread # support tasks: # text to music task # music continuation task # require either audio input only or text and audio inputs this_uuid = str(uuid.uuid1()) if self.llm: with self.lock: self.music_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False p = threading.Thread(target=self.llm_job, args=(text_token, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, this_uuid, duration_to_gen, task)) p.start() if stream is True: token_hop_len = self.token_min_hop_len while True: time.sleep(0.1) if len(self.music_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: this_music_audio = self.token2wav(token=text_token, token_len=text_token_len, uuid=this_uuid, sample_rate=sample_rate, finalize=False) yield {'music_audio': this_music_audio.cpu()} with self.lock: self.music_token_dict[this_uuid] = self.music_token_dict[this_uuid][token_hop_len:] # increase token_hop_len for better audio quality token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) if self.llm_end_dict[this_uuid] is True and len(self.music_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: break p.join() # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) with self.flow_hift_context: this_music_audio = self.token2wav(token=this_music_token, prompt_token=flow_prompt_audio_token, prompt_feat=prompt_audio_feat, embedding=flow_embedding, uuid=this_uuid, sample_rate=sample_rate, finalize=True) yield {'music_audio': this_music_audio.cpu()} else: # deal with all tokens if self.fast: if task == "reconstruct": assert audio_token is None this_music_token = audio_token this_music_audio = self.acoustictoken2wav(token=this_music_token) else: if self.llm: p.join() print(len(self.music_token_dict[this_uuid])) this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) print(this_music_token.shape) else: this_music_token = text_token logging.info("using wavtokenizer generator without flow matching") this_music_audio = self.semantictoken2wav(token=this_music_token) print(this_music_audio.shape) else: if self.llm: p.join() if len(self.music_token_dict[this_uuid]) != 0: this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) else: print(f"The list of tensors is empty for UUID: {this_uuid}") else: this_music_token = text_token logging.info(f"LLM generated audio token length: {this_music_token.shape[1]}") logging.info(f"using flow matching and {self.generator} generator") if self.generator == "hifi": if (embeddings[1] - embeddings[0]) <= duration_to_gen: if trim: trim_length = (int((embeddings[1] - embeddings[0])*75)) this_music_token = this_music_token[:, :trim_length] logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}") elif (embeddings[1] - embeddings[0]) < 1: logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.") this_music_audio = self.token2wav(token=this_music_token, token_len=torch.LongTensor([this_music_token.size(1)]), uuid=this_uuid, sample_rate=sample_rate, finalize=True) logging.info(f"Generated audio sequence length: {this_music_audio.shape[1]}") elif self.generator == "wavtokenizer": if (embeddings[1] - embeddings[0]) < duration_to_gen: if trim: trim_length = (int((embeddings[1] - embeddings[0])*75)) this_music_token = this_music_token[:,:trim_length] logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}") elif (embeddings[1] - embeddings[0]) < 1: logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.") this_music_audio = self.semantictoken2wav(token=this_music_token) yield {'music_audio': this_music_audio.cpu()} torch.cuda.synchronize()