# Copyright (c) 2024 Alibaba Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import openl3 import librosa import numpy as np from scipy import linalg import glob from tqdm import tqdm import os import soxr import pyloudnorm as pyln def calculate_embd_statistics(embd_lst): if isinstance(embd_lst, list): embd_lst = np.array(embd_lst) mu = np.mean(embd_lst, axis=0) sigma = np.cov(embd_lst, rowvar=False) return mu, sigma def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """ Adapted from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py Adapted from: https://github.com/gudgud96/frechet-audio-distance/blob/main/frechet_audio_distance/fad.py Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Params: -- mu1: Embedding's mean statistics for generated samples. -- mu2: Embedding's mean statistics for reference samples. -- sigma1: Covariance matrix over embeddings for generated samples. -- sigma2: Covariance matrix over embeddings for reference samples. Returns: -- Fréchet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean) def extract_embeddings(directory_path, channels, samplingrate, content_type, openl3_hop_size, batch_size=16): """ Given a list of files, compute their embeddings in batches. If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512. If channels == 2: mono audio is "faked" to stereo by copying the mono channel. Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings. Params: -- directory_path: path where the generated audio files are available. -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings. -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz. -- content_type: 'music' or 'env' to select a content type specific openl3 model. -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec. -- batch_size: number of audio files to process in each batch. Returns: -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance() """ _, extension = os.path.splitext(directory_path) if extension.lower() == ".scp": wav_files = [] with open(directory_path, "r") as f: for line in f: sec = line.strip().split(" ") wav_files.append(sec[1]) else: wav_files = glob.glob(directory_path) if len(wav_files) == 0: raise ValueError('No files with this extension in this path!') model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512) first = True for i in tqdm(range(0, len(wav_files), batch_size)): batch_files = wav_files[i:i+batch_size] batch_audio_l = [] batch_audio_r = [] batch_sr = [] for file in batch_files: audio, sr = librosa.load(file, sr=None, mono=False) audio = audio.T audio = pyln.normalize.peak(audio, -1.0) if audio.shape[0] < sr: print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr) # resample to the desired evaluation bandwidth audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr # mono embeddings are stored in batch_audio_l (R channel not used) if channels == 1: batch_audio_l.append(audio) elif channels == 2: if audio.ndim == 1: # if mono, "fake" stereo by copying mono channel to L and R batch_audio_l.append(audio) batch_audio_r.append(audio) elif audio.ndim == 2: # if it's stereo separate channels for openl3 batch_audio_l.append(audio[:,0]) batch_audio_r.append(audio[:,1]) batch_sr.append(samplingrate) # extracting mono embeddings (dim=512) or the L channel for stereo embeddings emb, _ = openl3.get_audio_embedding(batch_audio_l, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size) # format mono embedding if channels == 1: emb = np.concatenate(emb,axis=0) # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings elif channels == 2: # extract the missing R channel emb_r, _ = openl3.get_audio_embedding(batch_audio_r, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size) emb = [np.concatenate([l, r], axis=1) for l, r in zip(emb, emb_r)] emb = np.concatenate(emb, axis=0) # concatenate embeddings if first: embeddings = emb first = False else: embeddings = np.concatenate([embeddings, emb], axis=0) # return as a list of embeddings: [np.array[], ...] return [e for e in embeddings] def extract_embeddings_nobatching(directory_path, channels, samplingrate, content_type, openl3_hop_size): """ Given a list of files, compute their embeddings one by one. If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512. If channels == 2: mono audio is "faked" to stereo by copying the mono channel. Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings. Params: -- directory_path: path where the generated audio files are available. -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings. -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz. -- content_type: 'music' or 'env' to select a content type specific openl3 model. -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec. Returns: -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance() """ _, extension = os.path.splitext(directory_path) if extension.lower() == ".scp": wav_files = [] with open(directory_path, "r") as f: for line in f: sec = line.strip().split(" ") wav_files.append(sec[1]) else: wav_files = glob.glob(directory_path) if len(wav_files) == 0: raise ValueError('No files with this extension in this path!') model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512) first = True for file in tqdm(wav_files): audio, sr = librosa.load(file, sr=None) audio = pyln.normalize.peak(audio, -1.0) if audio.shape[0] < sr: print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr) # resample to the desired evaluation bandwidth audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings if channels == 2: if audio.ndim == 1: audio_l3, sr_l3 = audio, samplingrate elif audio.ndim == 2: # if it's stereo separate channels for openl3 audio_l3 = [audio[:,0], audio[:,1]] sr_l3 = [samplingrate, samplingrate] emb, _ = openl3.get_audio_embedding(audio_l3, sr_l3, model=model, verbose=False, hop_size=openl3_hop_size) if audio.ndim == 1: # if mono audio, "fake" stereo by concatenating mono embedding as L and R embeddings emb = np.concatenate([emb, emb],axis=1) elif audio.ndim == 2: emb = np.concatenate(emb,axis=1) # or extracting mono embeddings (dim=512) elif channels == 1: emb, _ = openl3.get_audio_embedding(audio, samplingrate, model=model, verbose=False, hop_size=openl3_hop_size) # concatenate embeddings if first: embeddings = emb first = False else: embeddings = np.concatenate([embeddings, emb], axis=0) # return as a list of embeddings: [np.array[], ...] return [e for e in embeddings] def openl3_fd(channels, samplingrate, content_type, openl3_hop_size, eval_path, eval_files_extension='.wav', ref_path=None, ref_files_extension='.wav', load_ref_embeddings=None, batching=False): """ Compute the Fréchet Distance between files in eval_path and ref_path. Fréchet distance computed on top of openl3 embeddings. GPU-based computation. Extracting the embeddings is timeconsuming. After being computed once, we store them. We store pre-computed reference embedding statistics in load/openl3_fd/ To load those and save computation, just set the path in load_ref_embeddings. If load_ref_embeddings is set, ref_path is not required. Params: -- channels: 1 (mono), or 2 (stereo) to get the Fréchet Distance over mono or stereo embeddings. -- samplingrate: max bandwith at wich we evaluate the given signals. Up to 48kHz. -- content_type: 'music' or 'env' to select a content type for openl3. -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec. -- eval_path: path where the generated audio files to evaluate are available. -- eval_files_extenstion: files extension (default .wav) in eval_path. -- ref_path: path where the reference audio files are available. (instead of load_ref_embeddings) -- ref_files_extension: files extension (default .wav) in ref_path. -- load_ref_embeddings: path to the reference embedding statistics. (inestead of ref_path) -- batching: set batch size (with an int) or set to False (default False). Returns: -- Fréchet distance. """ if not os.path.isdir(eval_path): raise ValueError('eval_path does not exist') if load_ref_embeddings: if not os.path.exists(load_ref_embeddings): raise ValueError('load_ref_embeddings does not exist') print('[LOADING REFERENCE EMBEDDINGS] ', load_ref_embeddings) loaded = np.load(load_ref_embeddings) mu_ref = loaded['mu_ref'] sigma_ref = loaded['sigma_ref'] else: if ref_path: if not os.path.isdir(ref_path): if not os.path.isfile(ref_path): raise ValueError("ref_path does not exist") if os.path.isfile(ref_path): path = ref_path else: path = os.path.join(ref_path, '*'+ref_files_extension) print('[EXTRACTING REFERENCE EMBEDDINGS] ', path) if batching: ref_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching) else: ref_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size) mu_ref, sigma_ref = calculate_embd_statistics(ref_embeddings) # store statistics to load later on if not os.path.exists('load/openl3_fd'): os.makedirs('load/openl3_fd/') save_ref_embeddings_path = ( 'load/openl3_fd/' + path.replace('/', '_') + '__channels' + str(channels) + '__' + str(samplingrate) + '__openl3' + str(content_type) + '__openl3hopsize' + str(openl3_hop_size) + '__batch' + str(batching) + '.npz' ) np.savez(save_ref_embeddings_path, mu_ref=mu_ref, sigma_ref=sigma_ref) print('[REFERENCE EMBEDDINGS][SAVED] ', save_ref_embeddings_path) else: raise ValueError('Must specify ref_path or load_ref_embeddings') path = os.path.join(eval_path, '*'+eval_files_extension) print('[EXTRACTING EVALUATION EMBEDDINGS] ', path) if batching: eval_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching) else: eval_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size) mu_eval, sigma_eval = calculate_embd_statistics(eval_embeddings) fd = calculate_frechet_distance(mu_eval, sigma_eval, mu_ref, sigma_ref) if load_ref_embeddings: print('[FRéCHET DISTANCE] ', eval_path, load_ref_embeddings, fd) else: print('[FRéCHET DISTANCE] ', eval_path, ref_path, fd) return fd