from typing import Optional import torch from torch import nn from torch.nn.utils import weight_norm from inspiremusic.wavtokenizer.decoder.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb=None): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h = q.shape q = q.permute(0, 2, 1) # b,hw,c w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = self.proj_out(h_) return x + h_ def make_attn(in_channels, attn_type="vanilla"): assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' print(f"making attention of type '{attn_type}' with {in_channels} in_channels") if attn_type == "vanilla": return AttnBlock(in_channels) class Backbone(nn.Module): """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, C denotes output features, and L is the sequence length. Returns: Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. """ raise NotImplementedError("Subclasses must implement the forward method.") class VocosBackbone(Backbone): """ Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. num_layers (int): Number of ConvNeXtBlock layers. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. None means non-conditional model. Defaults to None. """ def __init__( self, input_channels: int, dim: int, intermediate_dim: int, num_layers: int, layer_scale_init_value: Optional[float] = None, adanorm_num_embeddings: Optional[int] = None, ): super().__init__() self.input_channels = input_channels self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) self.adanorm = adanorm_num_embeddings is not None if adanorm_num_embeddings: self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) else: self.norm = nn.LayerNorm(dim, eps=1e-6) layer_scale_init_value = layer_scale_init_value or 1 / num_layers self.convnext = nn.ModuleList( [ ConvNeXtBlock( dim=dim, intermediate_dim=intermediate_dim, layer_scale_init_value=layer_scale_init_value, adanorm_num_embeddings=adanorm_num_embeddings, ) for _ in range(num_layers) ] ) self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) self.apply(self._init_weights) self.temb_ch = 0 block_in = dim dropout = 0.1 attn_type="vanilla" pos_net : tp.List[nn.Module] = [ ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), make_attn(block_in, attn_type=attn_type), ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), Normalize(block_in) ] self.pos_net = nn.Sequential(*pos_net) def _init_weights(self, m): if isinstance(m, (nn.Conv1d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None) -> torch.Tensor: x = self.embed(x) x = self.pos_net(x) if self.adanorm: # assert bandwidth_id is not None if bandwidth_id is None: bandwidth_id = torch.tensor(0, device='cuda') x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) else: x = self.norm(x.transpose(1, 2)) x = x.transpose(1, 2) for conv_block in self.convnext: x = conv_block(x, cond_embedding_id=bandwidth_id) x = self.final_layer_norm(x.transpose(1, 2)) return x class VocosResNetBackbone(Backbone): """ Vocos backbone module built with ResBlocks. Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. num_blocks (int): Number of ResBlock1 blocks. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. """ def __init__( self, input_channels, dim, num_blocks, layer_scale_init_value=None, ): super().__init__() self.input_channels = input_channels self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)) layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 self.resnet = nn.Sequential( *[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)] ) def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: x = self.embed(x) x = self.resnet(x) x = x.transpose(1, 2) return x