AALF commited on
Commit
9cbf6e6
Β·
verified Β·
1 Parent(s): 186bd9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -0
README.md CHANGED
@@ -17,6 +17,7 @@ pinned: false
17
 
18
  <h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
19
  <a href="https://arxiv.org/abs/2408.07990"> πŸ“‘ FuseChat Tech Report </a> |
 
20
  <a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
21
  <a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
22
  </h4>
@@ -37,8 +38,17 @@ Welcome to join us!
37
 
38
  ## News
39
 
 
 
 
 
 
 
 
 
40
  ### FuseChat [SOTA 7B LLM on MT-Bench]
41
 
 
42
  - **Aug 16, 2024:** πŸ”₯πŸ”₯πŸ”₯πŸ”₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
43
 
44
  - **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
@@ -91,3 +101,13 @@ Please cite the following paper if you reference our model, code, data, or paper
91
  year={2024}
92
  }
93
  ```
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  <h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
19
  <a href="https://arxiv.org/abs/2408.07990"> πŸ“‘ FuseChat Tech Report </a> |
20
+ <a href="https://slit-ai.github.io/FuseChat-3.0/"> 🌐 FuseChat-3.0 Blog Post </a> |
21
  <a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
22
  <a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
23
  </h4>
 
38
 
39
  ## News
40
 
41
+ ### FuseChat-3.0
42
+
43
+ - **Dec 12, 2024:** πŸ”₯ We release [FuseChat-3.0](https://huggingface.co/collections/FuseAI/fusechat-30-6752d18dec430bad7a236a75) and [Blog Post](https://slit-ai.github.io/FuseChat-3.0/). FuseChat-3.0 contains a series of models crafted to enhance performance by integrating the strengths of multiple source LLMs into more compact target LLMs. To achieve this fusion, we utilized four powerful source LLMs: [Gemma-2-27b-It](https://huggingface.co/google/gemma-2-27b-it), [Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407), [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), and [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct). For the target LLMs, we employed three widely-used smaller modelsβ€”[Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct), [Gemma-2-9B-It](https://huggingface.co/google/gemma-2-9b-it), and [Qwen-2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)β€”along with two even more compact modelsβ€”[Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) and [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct).
44
+
45
+ <p align="center">
46
+ <img src="FuseChat-3.0.png" width="60%"> <br>
47
+ </p>
48
+
49
  ### FuseChat [SOTA 7B LLM on MT-Bench]
50
 
51
+
52
  - **Aug 16, 2024:** πŸ”₯πŸ”₯πŸ”₯πŸ”₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
53
 
54
  - **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
 
101
  year={2024}
102
  }
103
  ```
104
+
105
+ Please cite the following paper if you reference our model, code, data, or paper related to FuseChat-3.0.
106
+ ```
107
+ @article{yang2024wrpo,
108
+ title={Weighted-Reward Preference Optimization for Implicit Model Fusion},
109
+ author={Ziyi Yang and Fanqi Wan and Longguang Zhong and Tianyuan Shi and Xiaojun Quan},
110
+ journal={arXiv preprint arXiv:2412.03187},
111
+ year={2024}
112
+ }
113
+ ```