Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,7 @@ pinned: false
|
|
17 |
|
18 |
<h4> |<a href="https://arxiv.org/abs/2401.10491"> π FuseLLM Paper @ICLR2024 </a> |
|
19 |
<a href="https://arxiv.org/abs/2408.07990"> π FuseChat Tech Report </a> |
|
|
|
20 |
<a href="https://huggingface.co/FuseAI"> π€ HuggingFace Repo </a> |
|
21 |
<a href="https://github.com/fanqiwan/FuseLLM"> π± GitHub Repo </a> |
|
22 |
</h4>
|
@@ -37,8 +38,17 @@ Welcome to join us!
|
|
37 |
|
38 |
## News
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
### FuseChat [SOTA 7B LLM on MT-Bench]
|
41 |
|
|
|
42 |
- **Aug 16, 2024:** π₯π₯π₯π₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
|
43 |
|
44 |
- **Mar 13, 2024:** π₯π₯π₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
|
@@ -91,3 +101,13 @@ Please cite the following paper if you reference our model, code, data, or paper
|
|
91 |
year={2024}
|
92 |
}
|
93 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
<h4> |<a href="https://arxiv.org/abs/2401.10491"> π FuseLLM Paper @ICLR2024 </a> |
|
19 |
<a href="https://arxiv.org/abs/2408.07990"> π FuseChat Tech Report </a> |
|
20 |
+
<a href="https://slit-ai.github.io/FuseChat-3.0/"> π FuseChat-3.0 Blog Post </a> |
|
21 |
<a href="https://huggingface.co/FuseAI"> π€ HuggingFace Repo </a> |
|
22 |
<a href="https://github.com/fanqiwan/FuseLLM"> π± GitHub Repo </a> |
|
23 |
</h4>
|
|
|
38 |
|
39 |
## News
|
40 |
|
41 |
+
### FuseChat-3.0
|
42 |
+
|
43 |
+
- **Dec 12, 2024:** π₯ We release [FuseChat-3.0](https://huggingface.co/collections/FuseAI/fusechat-30-6752d18dec430bad7a236a75) and [Blog Post](https://slit-ai.github.io/FuseChat-3.0/). FuseChat-3.0 contains a series of models crafted to enhance performance by integrating the strengths of multiple source LLMs into more compact target LLMs. To achieve this fusion, we utilized four powerful source LLMs: [Gemma-2-27b-It](https://huggingface.co/google/gemma-2-27b-it), [Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407), [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), and [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct). For the target LLMs, we employed three widely-used smaller modelsβ[Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct), [Gemma-2-9B-It](https://huggingface.co/google/gemma-2-9b-it), and [Qwen-2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)βalong with two even more compact modelsβ[Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) and [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct).
|
44 |
+
|
45 |
+
<p align="center">
|
46 |
+
<img src="FuseChat-3.0.png" width="60%"> <br>
|
47 |
+
</p>
|
48 |
+
|
49 |
### FuseChat [SOTA 7B LLM on MT-Bench]
|
50 |
|
51 |
+
|
52 |
- **Aug 16, 2024:** π₯π₯π₯π₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
|
53 |
|
54 |
- **Mar 13, 2024:** π₯π₯π₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
|
|
|
101 |
year={2024}
|
102 |
}
|
103 |
```
|
104 |
+
|
105 |
+
Please cite the following paper if you reference our model, code, data, or paper related to FuseChat-3.0.
|
106 |
+
```
|
107 |
+
@article{yang2024wrpo,
|
108 |
+
title={Weighted-Reward Preference Optimization for Implicit Model Fusion},
|
109 |
+
author={Ziyi Yang and Fanqi Wan and Longguang Zhong and Tianyuan Shi and Xiaojun Quan},
|
110 |
+
journal={arXiv preprint arXiv:2412.03187},
|
111 |
+
year={2024}
|
112 |
+
}
|
113 |
+
```
|