etzion commited on
Commit
4c358b8
verified
1 Parent(s): 1188b93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -2
README.md CHANGED
@@ -27,10 +27,26 @@ Here you can find our NER models:
27
 
28
  [3] **BI-BI Problem**: Building training corpus when entities from the same type appear in sequence, labeled as continuations of one another.
29
 
30
- [4] **Classic**: which types
31
-
32
  For example, the text "讛讗专讬 驻讜讟专 讜专讜谉 讜讜讬讝诇讬" would tagged as **SINGLE** entity. That problem prevent the model to extract entities correctly.
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  # Results
35
  We test our models on the **IAHALT test set**. We also check another models, such as [DictaBert](https://huggingface.co/dicta-il/dictabert) and [HeBert](https://huggingface.co/avichr/heBERT). This is the performence results:
36
 
 
27
 
28
  [3] **BI-BI Problem**: Building training corpus when entities from the same type appear in sequence, labeled as continuations of one another.
29
 
 
 
30
  For example, the text "讛讗专讬 驻讜讟专 讜专讜谉 讜讜讬讝诇讬" would tagged as **SINGLE** entity. That problem prevent the model to extract entities correctly.
31
 
32
+ [4] **Classic**: The classic NER types:
33
+
34
+ | entity type | full name | examples |
35
+ |:-----------:|:---------:| --------:|
36
+ | **TIMEX** | Time Expression | 1945, 砖谞转 1993, 讬讜诐 讛砖讜讗讛, 砖谞讜转 讛-90 |
37
+ | **GPE** | Geopolitical Entity | 讙专诪谞讬讛, 驻讜诇讬谉, 讘专诇讬谉, 讜讜专砖讛 |
38
+ | **PER** | Person | 讗讚讜诇祝 讛讬讟诇专, 专讜讚讜诇祝 讛住, 诪专讚讻讬 讗谞讬诇讘讬抓 |
39
+ | **LOC** | Location | 诪讝专讞 讗讬专讜驻讛, 讗讙谉 讛讬诐 讛转讬讻讜谉, 讛讙诇讬诇 |
40
+ | **TTL** | Title | 驻讬讛专专, 拽讬住专, 诪谞讻"诇 |
41
+ | **ANG** | Language | 注讘专讬转, 注专讘讬转, 讙专诪谞讬转 |
42
+ | **DUC** | Product | 驻讬讬住讘讜拽, F-16, 转谞讜讘讛 |
43
+ | **WOA** | Work of Art | 讚讜"讞 诪讘拽专 讛诪讚讬谞讛, 注讬转讜谉 讛讗专抓, 讛讗专讬 驻讜讟专, 转讬拽 2000, |
44
+ | **EVE** | Event | 讛砖讜讗讛, 诪诇讞诪转 讛注讜诇诐 讛砖谞讬讬讛, 砖诇讟讜谉 讛讗驻专讟讛讬讬讚 |
45
+ | **MISC** | Miscellaneous聽 | 拽讜专讜谞讛, 讛转讜 讛讬专讜拽, 诪讚诇讬转 讝讛讘, 讘讬讟拽讜讬谉 |
46
+ | **ORG** | Organization | 讛-SS, 驻讚"诐, 诪诪砖诇转 讞讜祝 讛砖谞讛讘 |
47
+ | **FAC** | Facility | 讗讜讜砖讜讜讬抓, 诪讙讚诇讬 讛转讗讜诪讬诐, 谞转讘"讙 2000, 专讞讜讘 拽驻诇谉 |
48
+
49
+
50
  # Results
51
  We test our models on the **IAHALT test set**. We also check another models, such as [DictaBert](https://huggingface.co/dicta-il/dictabert) and [HeBert](https://huggingface.co/avichr/heBERT). This is the performence results:
52