etzion commited on
Commit
ae28db6
·
verified ·
1 Parent(s): b780e3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -3
README.md CHANGED
@@ -1,7 +1,9 @@
1
 
2
  # Fusion NER Models
3
 
4
- |model name | model descreption | model path | datasets |
 
 
5
  |:----------|:------------------|:-----------|:--------:|
6
  | Basic | Basic training on IAHALT | [https://huggingface.co/FusioNER/Basic_IAHALT](https://huggingface.co/FusioNER/Basic_IAHALT) | IAHALT |
7
  | Vitaly | Vitaly training on IAHALT (with BI-BI problem) | [https://huggingface.co/FusioNER/Vitaly_NER](https://huggingface.co/FusioNER/Vitaly_NER) | IAHALT |
@@ -11,9 +13,11 @@
11
  | NEMO | Training on NEMO dataset| [https://huggingface.co/FusioNER/Nemo/tree/main](https://huggingface.co/FusioNER/Nemo) | NEMO |
12
  | IAHALT_and_NEMO | Basic training on IAHALT + NEMO | [https://huggingface.co/FusioNER/IAHALT_and_NEMO](https://huggingface.co/FusioNER/IAHALT_and_NEMO) | IAHALT + NEMO |
13
  | IAHALT_and_NEMO_PP | Training on IAHALT + NEMO + Name-Sentences[1] + Entity-Injection[2] | [https://huggingface.co/FusioNER/IAHALT_and_NEMO_and_PP](https://huggingface.co/FusioNER/IAHALT_and_NEMO_and_PP) | IAHALT + NEMO |
14
- | | | []() | IAHALT |
 
 
15
 
16
  [1] Name-Sentences: Adding to the corpus sentences that contain only the entity we want the network to learn.
17
 
18
- [2] Entity-Injection: Replace tagged entity in the original corpus with new entity. By using, this method, the model can learn new entities (not labels!) which the model not extracted before.
19
 
 
1
 
2
  # Fusion NER Models
3
 
4
+ Here you can find our NER models:
5
+
6
+ |model name | model description | model path | datasets |
7
  |:----------|:------------------|:-----------|:--------:|
8
  | Basic | Basic training on IAHALT | [https://huggingface.co/FusioNER/Basic_IAHALT](https://huggingface.co/FusioNER/Basic_IAHALT) | IAHALT |
9
  | Vitaly | Vitaly training on IAHALT (with BI-BI problem) | [https://huggingface.co/FusioNER/Vitaly_NER](https://huggingface.co/FusioNER/Vitaly_NER) | IAHALT |
 
13
  | NEMO | Training on NEMO dataset| [https://huggingface.co/FusioNER/Nemo/tree/main](https://huggingface.co/FusioNER/Nemo) | NEMO |
14
  | IAHALT_and_NEMO | Basic training on IAHALT + NEMO | [https://huggingface.co/FusioNER/IAHALT_and_NEMO](https://huggingface.co/FusioNER/IAHALT_and_NEMO) | IAHALT + NEMO |
15
  | IAHALT_and_NEMO_PP | Training on IAHALT + NEMO + Name-Sentences[1] + Entity-Injection[2] | [https://huggingface.co/FusioNER/IAHALT_and_NEMO_and_PP](https://huggingface.co/FusioNER/IAHALT_and_NEMO_and_PP) | IAHALT + NEMO |
16
+ | Animals | Training on IAHALT + Entity-Injection[2] (of animals names as PER entities) | [https://huggingface.co/FusioNER/Animals](https://huggingface.co/FusioNER/Animals) | IAHALT |
17
+ | PRS-Injection | Training on IAHALT + Entity-Injection[2] (of PRS names as PER entities) | [https://huggingface.co/FusioNER/PRS-Injection](https://huggingface.co/FusioNER/PRS-Injection) | IAHALT |
18
+
19
 
20
  [1] Name-Sentences: Adding to the corpus sentences that contain only the entity we want the network to learn.
21
 
22
+ [2] Entity-Injection: Replace a tagged entity in the original corpus with a new entity. By using, this method, the model can learn new entities (not labels!) which the model not extracted before.
23