etzion commited on
Commit
cf67500
verified
1 Parent(s): 6ca8dfe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -1
README.md CHANGED
@@ -19,7 +19,6 @@ Here you can find our NER models:
19
  | **DICTA_smart** | Training the [DICTA](https://huggingface.co/dicta-il/dictabert) model on IAHALT + Name-Sentences[1] + Entity-Injection[2]] [dataset](https://huggingface.co/datasets/FusioNER/Smart_Injection) | [https://huggingface.co/FusioNER/DICTA_Smart](https://huggingface.co/FusioNER/DICTA_Smart) | IAHALT | [FusioNER/Smart_Injection](https://huggingface.co/datasets/FusioNER/Smart_Injection) | [DICTA](https://huggingface.co/dicta-il/dictabert) |
20
 
21
 
22
-
23
  [1] **Name-Sentences**: Adding to the corpus sentences that contain only the entity we want the network to learn.
24
 
25
  [2] **Entity-Injection**: Replace a tagged entity in the original corpus with a new entity. By using, this method, the model can learn new entities (not labels!) which the model not extracted before.
@@ -28,5 +27,11 @@ Here you can find our NER models:
28
 
29
  For example, the text "讛讗专讬 驻讜讟专 讜专讜谉 讜讜讬讝诇讬" would tagged as **SINGLE** entity. That problem prevent the model to extract entities correctly.
30
 
 
 
 
 
 
 
31
 
32
  **MIT License**
 
19
  | **DICTA_smart** | Training the [DICTA](https://huggingface.co/dicta-il/dictabert) model on IAHALT + Name-Sentences[1] + Entity-Injection[2]] [dataset](https://huggingface.co/datasets/FusioNER/Smart_Injection) | [https://huggingface.co/FusioNER/DICTA_Smart](https://huggingface.co/FusioNER/DICTA_Smart) | IAHALT | [FusioNER/Smart_Injection](https://huggingface.co/datasets/FusioNER/Smart_Injection) | [DICTA](https://huggingface.co/dicta-il/dictabert) |
20
 
21
 
 
22
  [1] **Name-Sentences**: Adding to the corpus sentences that contain only the entity we want the network to learn.
23
 
24
  [2] **Entity-Injection**: Replace a tagged entity in the original corpus with a new entity. By using, this method, the model can learn new entities (not labels!) which the model not extracted before.
 
27
 
28
  For example, the text "讛讗专讬 驻讜讟专 讜专讜谉 讜讜讬讝诇讬" would tagged as **SINGLE** entity. That problem prevent the model to extract entities correctly.
29
 
30
+ # Hebrew NLP models
31
+ | Model name | Link | Creator |
32
+ |:-----------|:-----|:--------|
33
+ | HeNLP/HeRo | [https://huggingface.co/HeNLP/HeRo](HeNLP/HeRo) | Vitaly Shalumov and Harel Haskey |
34
+ | dicta-il/dictabert | [https://huggingface.co/dicta-il/dictabert](https://huggingface.co/dicta-il/dictabert) | Shaltiel Shmidman and Avi Shmidman and Moshe Koppel |
35
+ | avichr/heBERT | [https://huggingface.co/avichr/heBERT](https://huggingface.co/avichr/heBERT) | Avihay Chriqui and Inbal Yahav |
36
 
37
  **MIT License**