Spaces:
Running
Running
File size: 1,095 Bytes
7e8eba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
import torch
import torchaudio
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
# Load MMS ASR model
MODEL_NAME = "facebook/mms-1b-all"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME).to(device)
asr_pipeline = pipeline("automatic-speech-recognition", model=model, processor=processor, torch_dtype=torch.float16, device=0 if device == "cuda" else -1)
# Speech-to-text function
def transcribe(audio):
waveform, sr = torchaudio.load(audio)
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform) # Ensure 16kHz sample rate
text = asr_pipeline({"array": waveform.squeeze().numpy(), "sampling_rate": 16000})["text"]
return text
# Gradio UI
gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Text(label="Transcription"),
title="Real-time Speech-to-Text",
description="Speak into your microphone and see the transcribed text.",
).launch()
|