Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ttsmms import download, TTS
|
3 |
+
from langdetect import detect
|
4 |
+
import os
|
5 |
+
from pydub import AudioSegment
|
6 |
+
from pydub.playback import play
|
7 |
+
|
8 |
+
# Ensure ffmpeg works inside Hugging Face Spaces
|
9 |
+
AudioSegment.converter = "/usr/bin/ffmpeg"
|
10 |
+
|
11 |
+
# Download and load TTS models
|
12 |
+
swahili_dir = download("swh", "./data/swahili")
|
13 |
+
english_dir = download("eng", "./data/english") # Ensure an English TTS model is available
|
14 |
+
|
15 |
+
swahili_tts = TTS(swahili_dir)
|
16 |
+
english_tts = TTS(english_dir)
|
17 |
+
|
18 |
+
# Function to process mixed-language text
|
19 |
+
def text_to_speech(text):
|
20 |
+
words = text.split() # Split text into words
|
21 |
+
audio_clips = []
|
22 |
+
|
23 |
+
for word in words:
|
24 |
+
lang = detect(word) # Detect language of each word
|
25 |
+
wav_path = f"./temp_{word}.wav"
|
26 |
+
|
27 |
+
if lang == "sw":
|
28 |
+
swahili_tts.synthesis(word, wav_path=wav_path)
|
29 |
+
else:
|
30 |
+
english_tts.synthesis(word, wav_path=wav_path)
|
31 |
+
|
32 |
+
audio_clips.append(AudioSegment.from_wav(wav_path))
|
33 |
+
os.remove(wav_path) # Remove temporary files
|
34 |
+
|
35 |
+
# Combine all audio clips
|
36 |
+
final_audio = sum(audio_clips)
|
37 |
+
output_path = "./output.wav"
|
38 |
+
final_audio.export(output_path, format="wav")
|
39 |
+
|
40 |
+
return output_path
|
41 |
+
|
42 |
+
# Gradio UI
|
43 |
+
gr.Interface(
|
44 |
+
fn=text_to_speech,
|
45 |
+
inputs=gr.Textbox(label="Enter Text"),
|
46 |
+
outputs=gr.Audio(label="Generated Speech"),
|
47 |
+
title="Swahili & English Text-to-Speech",
|
48 |
+
description="Type text in Swahili and English, and listen to the mixed-language speech.",
|
49 |
+
).launch()
|