Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Import necessary modules
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Load the fine-tuned model from Hugging Face
|
7 |
+
pipe = pipeline("automatic-speech-recognition", model="Futuresony/whisper-small-sw")
|
8 |
+
|
9 |
+
# Function to transcribe audio
|
10 |
+
def transcribe(audio):
|
11 |
+
if audio is None:
|
12 |
+
return "Please upload or record an audio file."
|
13 |
+
print("Transcribing audio...")
|
14 |
+
result = pipe(audio)["text"]
|
15 |
+
return result
|
16 |
+
|
17 |
+
# Gradio App
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
gr.Markdown("# ποΈ Swahili Speech-to-Text Transcription App")
|
20 |
+
|
21 |
+
with gr.Row():
|
22 |
+
audio_input = gr.Audio(source="microphone", type="filepath", label="π€ Record Audio")
|
23 |
+
file_input = gr.Audio(source="upload", type="filepath", label="π Upload Audio File")
|
24 |
+
|
25 |
+
transcribe_button = gr.Button("Transcribe")
|
26 |
+
output_text = gr.Textbox(label="π Transcription Output")
|
27 |
+
|
28 |
+
transcribe_button.click(transcribe, inputs=[audio_input], outputs=output_text)
|
29 |
+
transcribe_button.click(transcribe, inputs=[file_input], outputs=output_text)
|
30 |
+
|
31 |
+
# Launch the app
|
32 |
+
demo.launch()
|