import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline from datasets import load_dataset import soundfile as sf import torch from asr import transcribe_auto # ASR function # Initialize Chat Model chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") # Initialize Facebook TTS Model tts_synthesizer = pipeline("text-to-speech", model="Futuresony/Output") # Load Speaker Embeddings for TTS embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def speech_to_chat(audio, history, system_message, max_tokens, temperature, top_p): # Step 1: Transcribe Speech to Text transcribed_text = transcribe_auto(audio) # Step 2: Generate Chat Response messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": transcribed_text}) response = "" for msg in chat_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token # Step 3: Convert Chat Response to Speech speech = tts_synthesizer(response, forward_params={"speaker_embeddings": speaker_embedding}) output_file = "generated_speech.wav" sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"]) # Update Chat History history.append((transcribed_text, response)) # Return transcribed text, chatbot response, generated speech, and updated history return transcribed_text, response, output_file, history # Gradio Interface with gr.Blocks() as demo: gr.Markdown("