Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import snapshot_download | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" | |
REVISION = "ceaf371f01ef66192264811b390bccad475a4f02" | |
LOCAL_FLORENCE = snapshot_download( | |
repo_id="microsoft/Florence-2-base", | |
revision=REVISION | |
) | |
LOCAL_TURBOX = snapshot_download( | |
repo_id="tensorart/stable-diffusion-3.5-large-TurboX" | |
) | |
LOCAL_FLORENCE_DIR = snapshot_download( | |
repo_id="microsoft/Florence-2-base", | |
revision=REVISION, | |
local_files_only=False | |
) | |
import sys, types, importlib.machinery, importlib | |
spec = importlib.machinery.ModuleSpec('flash_attn', loader=None) | |
mod = types.ModuleType('flash_attn') | |
mod.__spec__ = spec | |
sys.modules['flash_attn'] = mod | |
import huggingface_hub as _hf_hub | |
_hf_hub.cached_download = _hf_hub.hf_hub_download | |
import gradio as gr | |
import torch | |
import random | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from transformers import ( | |
CLIPTextModel, | |
CLIPTokenizer, | |
CLIPFeatureExtractor, | |
) | |
import diffusers | |
from diffusers import StableDiffusionPipeline | |
from diffusers import DiffusionPipeline | |
from diffusers import EulerDiscreteScheduler as FlowMatchEulerDiscreteScheduler | |
from diffusers import UNet2DConditionModel | |
# from diffusers import FlowMatchEulerDiscreteScheduler | |
# diffusers.FlowMatchEulerDiscreteScheduler = EulerDiscreteScheduler | |
import transformers.utils.import_utils as _import_utils | |
from transformers.utils import is_flash_attn_2_available | |
_import_utils._is_package_available = lambda pkg: False | |
_import_utils.is_flash_attn_2_available = lambda: False | |
hf_utils = importlib.import_module('transformers.utils') | |
hf_utils.is_flash_attn_2_available = lambda *a, **k: False | |
hf_utils.is_flash_attn_greater_or_equal_2_10 = lambda *a, **k: False | |
mask_utils = importlib.import_module("transformers.modeling_attn_mask_utils") | |
for fn in ("_prepare_4d_attention_mask_for_sdpa", "_prepare_4d_causal_attention_mask_for_sdpa"): | |
if not hasattr(mask_utils, fn): | |
setattr(mask_utils, fn, lambda *a, **k: None) | |
cfg_mod = importlib.import_module("transformers.configuration_utils") | |
_PrC = cfg_mod.PretrainedConfig | |
_orig_getattr = _PrC.__getattribute__ | |
def _getattr(self, name): | |
if name == "_attn_implementation": | |
return "sdpa" | |
return _orig_getattr(self, name) | |
_PrC.__getattribute__ = _getattr | |
model_repo = "tensorart/stable-diffusion-3.5-large-TurboX" | |
# Florence-2 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
model_repo, | |
subfolder="scheduler", | |
torch_dtype=torch.float16, | |
) | |
text_encoder = CLIPTextModel.from_pretrained( | |
model_repo, subfolder="text_encoder", torch_dtype=torch.float16 | |
) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
model_repo, subfolder="tokenizer" | |
) | |
feature_extractor = CLIPFeatureExtractor.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
subfolder="feature_extractor" | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
model_repo, subfolder="unet", torch_dtype=torch.float16 | |
) | |
florence_model = AutoModelForCausalLM.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16) | |
florence_model.to("cpu") | |
florence_model.eval() | |
florence_processor = AutoProcessor.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True) | |
# Stable Diffusion TurboX | |
diffusers.StableDiffusion3Pipeline = StableDiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained( | |
"tensorart/stable-diffusion-3.5-large-TurboX", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
safety_checker=None, | |
feature_extractor=None | |
) | |
pipe = pipe.to("cuda") | |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", local_files_only=True, trust_remote_code = True, shift=5) | |
MAX_SEED = 2**31 - 1 | |
def pseudo_translate_to_korean_style(en_prompt: str) -> str: | |
return f"Cartoon styled {en_prompt} handsome or pretty people" | |
def generate_prompt(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=512, | |
num_beams=3 | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
prompt_en = parsed_answer["<MORE_DETAILED_CAPTION>"] | |
# ๋ฒ์ญ๊ธฐ ์์ด ์คํ์ผ ์ ์ฉ | |
cartoon_prompt = pseudo_translate_to_korean_style(prompt_en) | |
return cartoon_prompt | |
def generate_image(prompt, seed=42, randomize_seed=False): | |
"""ํ ์คํธ ํ๋กฌํํธ โ ์ด๋ฏธ์ง ์์ฑ""" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
guidance_scale=1.5, | |
num_inference_steps=8, | |
width=768, | |
height=768, | |
generator=generator | |
).images[0] | |
return image, seed | |
# Gradio UI ๊ตฌ์ฑ | |
with gr.Blocks() as demo: | |
gr.Markdown("# ๐ผ ์ด๋ฏธ์ง โ ์ค๋ช ์์ฑ โ ์นดํฐ ์ด๋ฏธ์ง ์๋ ์์ฑ๊ธฐ") | |
gr.Markdown("**๐ ์ฌ์ฉ๋ฒ ์๋ด (ํ๊ตญ์ด)**\n" | |
"- ์ผ์ชฝ์ ์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํ์ธ์.\n" | |
"- AI๊ฐ ์์ด ์ค๋ช ์ ๋ง๋ค๊ณ , ๋ด๋ถ์์ ํ๊ตญ์ด ์คํ์ผ ํ๋กฌํํธ๋ก ์ฌ๊ตฌ์ฑํฉ๋๋ค.\n" | |
"- ์ค๋ฅธ์ชฝ์ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง๊ฐ ์์ฑ๋ฉ๋๋ค.") | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="๐จ ์๋ณธ ์ด๋ฏธ์ง ์ ๋ก๋") | |
run_button = gr.Button("โจ ์์ฑ ์์") | |
with gr.Column(): | |
prompt_out = gr.Textbox(label="๐ ์คํ์ผ ์ ์ฉ๋ ํ๋กฌํํธ", lines=3, show_copy_button=True) | |
output_img = gr.Image(label="๐ ์์ฑ๋ ์ด๋ฏธ์ง") | |
def full_process(img): | |
prompt = generate_prompt(img) | |
image, seed = generate_image(prompt, randomize_seed=True) | |
return prompt, image | |
run_button.click(fn=full_process, inputs=[input_img], outputs=[prompt_out, output_img]) | |
demo.launch() | |