Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -72,6 +72,23 @@ _PrC.__getattribute__ = _getattr
|
|
72 |
|
73 |
# Florence-2 로드
|
74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
florence_model = AutoModelForCausalLM.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16)
|
76 |
florence_model.to("cpu")
|
77 |
florence_model.eval()
|
@@ -83,14 +100,18 @@ diffusers.StableDiffusion3Pipeline = StableDiffusionPipeline
|
|
83 |
|
84 |
model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
|
85 |
|
86 |
-
pipe =
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", local_files_only=True, trust_remote_code = True, shift=5)
|
93 |
-
pipe = pipe.to(device)
|
94 |
|
95 |
MAX_SEED = 2**31 - 1
|
96 |
|
@@ -129,7 +150,6 @@ def generate_image(prompt, seed=42, randomize_seed=False):
|
|
129 |
generator = torch.Generator().manual_seed(seed)
|
130 |
image = pipe(
|
131 |
prompt=prompt,
|
132 |
-
negative_prompt="왜곡된 손, 흐림, 이상한 얼굴",
|
133 |
guidance_scale=1.5,
|
134 |
num_inference_steps=8,
|
135 |
width=768,
|
|
|
72 |
|
73 |
# Florence-2 로드
|
74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
76 |
+
model_id,
|
77 |
+
subfolder="scheduler",
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
)
|
80 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
81 |
+
model_id, subfolder="text_encoder_1", torch_dtype=torch.float16
|
82 |
+
)
|
83 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
84 |
+
model_id, subfolder="tokenizer_1"
|
85 |
+
)
|
86 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
87 |
+
model_id, subfolder="feature_extractor"
|
88 |
+
)
|
89 |
+
unet = UNet2DConditionModel.from_pretrained(
|
90 |
+
model_id, subfolder="unet", torch_dtype=torch.float16
|
91 |
+
)
|
92 |
florence_model = AutoModelForCausalLM.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16)
|
93 |
florence_model.to("cpu")
|
94 |
florence_model.eval()
|
|
|
100 |
|
101 |
model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
|
102 |
|
103 |
+
pipe = StableDiffusionPipeline(
|
104 |
+
text_encoder=text_encoder,
|
105 |
+
tokenizer=tokenizer,
|
106 |
+
feature_extractor=feature_extractor,
|
107 |
+
scheduler=scheduler,
|
108 |
+
unet=unet,
|
109 |
+
vae=vae,
|
110 |
+
safety_checker=safety_checker,
|
111 |
+
torch_dtype=torch.float16,
|
112 |
+
).to(device)
|
113 |
|
114 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", local_files_only=True, trust_remote_code = True, shift=5)
|
|
|
115 |
|
116 |
MAX_SEED = 2**31 - 1
|
117 |
|
|
|
150 |
generator = torch.Generator().manual_seed(seed)
|
151 |
image = pipe(
|
152 |
prompt=prompt,
|
|
|
153 |
guidance_scale=1.5,
|
154 |
num_inference_steps=8,
|
155 |
width=768,
|