Futuretop commited on
Commit
1be8ad2
·
verified ·
1 Parent(s): 09b7848

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -7
app.py CHANGED
@@ -72,6 +72,23 @@ _PrC.__getattribute__ = _getattr
72
 
73
  # Florence-2 로드
74
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  florence_model = AutoModelForCausalLM.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16)
76
  florence_model.to("cpu")
77
  florence_model.eval()
@@ -83,14 +100,18 @@ diffusers.StableDiffusion3Pipeline = StableDiffusionPipeline
83
 
84
  model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
85
 
86
- pipe = diffusers.DiffusionPipeline.from_pretrained(
87
- "tensorart/stable-diffusion-3.5-large-TurboX",
88
- trust_remote_code=True,
89
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
90
- )
 
 
 
 
 
91
 
92
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", local_files_only=True, trust_remote_code = True, shift=5)
93
- pipe = pipe.to(device)
94
 
95
  MAX_SEED = 2**31 - 1
96
 
@@ -129,7 +150,6 @@ def generate_image(prompt, seed=42, randomize_seed=False):
129
  generator = torch.Generator().manual_seed(seed)
130
  image = pipe(
131
  prompt=prompt,
132
- negative_prompt="왜곡된 손, 흐림, 이상한 얼굴",
133
  guidance_scale=1.5,
134
  num_inference_steps=8,
135
  width=768,
 
72
 
73
  # Florence-2 로드
74
  device = "cuda" if torch.cuda.is_available() else "cpu"
75
+ scheduler = EulerDiscreteScheduler.from_pretrained(
76
+ model_id,
77
+ subfolder="scheduler",
78
+ torch_dtype=torch.float16,
79
+ )
80
+ text_encoder = CLIPTextModel.from_pretrained(
81
+ model_id, subfolder="text_encoder_1", torch_dtype=torch.float16
82
+ )
83
+ tokenizer = CLIPTokenizer.from_pretrained(
84
+ model_id, subfolder="tokenizer_1"
85
+ )
86
+ feature_extractor = CLIPFeatureExtractor.from_pretrained(
87
+ model_id, subfolder="feature_extractor"
88
+ )
89
+ unet = UNet2DConditionModel.from_pretrained(
90
+ model_id, subfolder="unet", torch_dtype=torch.float16
91
+ )
92
  florence_model = AutoModelForCausalLM.from_pretrained(LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16)
93
  florence_model.to("cpu")
94
  florence_model.eval()
 
100
 
101
  model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
102
 
103
+ pipe = StableDiffusionPipeline(
104
+ text_encoder=text_encoder,
105
+ tokenizer=tokenizer,
106
+ feature_extractor=feature_extractor,
107
+ scheduler=scheduler,
108
+ unet=unet,
109
+ vae=vae,
110
+ safety_checker=safety_checker,
111
+ torch_dtype=torch.float16,
112
+ ).to(device)
113
 
114
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", local_files_only=True, trust_remote_code = True, shift=5)
 
115
 
116
  MAX_SEED = 2**31 - 1
117
 
 
150
  generator = torch.Generator().manual_seed(seed)
151
  image = pipe(
152
  prompt=prompt,
 
153
  guidance_scale=1.5,
154
  num_inference_steps=8,
155
  width=768,