Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,115 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
-
|
153 |
-
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from deepface import DeepFace
|
7 |
+
import re
|
8 |
+
|
9 |
+
# Load BLIP model
|
10 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
11 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
|
13 |
+
# Load image
|
14 |
+
image_path = "your_image.jpg" # Replace with your image path
|
15 |
+
image_pil = Image.open(image_path).convert('RGB')
|
16 |
+
image_np = np.array(image_pil)
|
17 |
+
|
18 |
+
# BLIP caption
|
19 |
+
inputs = processor(image_pil, return_tensors="pt")
|
20 |
+
out = model.generate(**inputs)
|
21 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
# OpenCV for face detection
|
24 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
25 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
26 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
27 |
+
|
28 |
+
# Analyze each face with DeepFace
|
29 |
+
face_infos = []
|
30 |
+
for (x, y, w, h) in faces:
|
31 |
+
face_crop = image_np[y:y+h, x:x+w]
|
32 |
+
try:
|
33 |
+
analysis = DeepFace.analyze(face_crop, actions=['age', 'gender'], enforce_detection=False)
|
34 |
+
age = analysis[0]['age']
|
35 |
+
gender = analysis[0]['gender']
|
36 |
+
# Map age to range
|
37 |
+
if age < 13:
|
38 |
+
age_group = "child"
|
39 |
+
elif age < 20:
|
40 |
+
age_group = "teen"
|
41 |
+
elif age < 60:
|
42 |
+
age_group = "adult"
|
43 |
+
else:
|
44 |
+
age_group = "senior"
|
45 |
+
face_infos.append({
|
46 |
+
"age_group": age_group,
|
47 |
+
"gender": gender,
|
48 |
+
})
|
49 |
+
except Exception as e:
|
50 |
+
continue
|
51 |
+
|
52 |
+
# 얼굴 수, 연령대 요약
|
53 |
+
num_faces = len(face_infos)
|
54 |
+
age_summary = {}
|
55 |
+
for face in face_infos:
|
56 |
+
key = f"{face['gender']} {face['age_group']}"
|
57 |
+
age_summary[key] = age_summary.get(key, 0) + 1
|
58 |
+
|
59 |
+
# Extract clothing details
|
60 |
+
def extract_clothing(text):
|
61 |
+
colors = ['red', 'blue', 'green', 'black', 'white', 'yellow', 'brown', 'gray', 'pink', 'orange']
|
62 |
+
patterns = ['striped', 'checkered', 'plaid', 'polka-dot', 'solid', 'patterned', 'floral']
|
63 |
+
items = ['jacket', 'coat', 'dress', 'shirt', 't-shirt', 'jeans', 'pants', 'shorts',
|
64 |
+
'suit', 'sneakers', 'hat', 'scarf', 'uniform']
|
65 |
+
|
66 |
+
found_colors = [c for c in colors if c in text.lower()]
|
67 |
+
found_patterns = [p for p in patterns if p in text.lower()]
|
68 |
+
found_items = [i for i in items if i in text.lower()]
|
69 |
+
|
70 |
+
return found_colors, found_patterns, found_items
|
71 |
+
|
72 |
+
colors, patterns, items = extract_clothing(caption)
|
73 |
+
|
74 |
+
def clothing_sentence():
|
75 |
+
parts = []
|
76 |
+
if colors:
|
77 |
+
parts.append(f"colors such as {', '.join(colors)}")
|
78 |
+
if patterns:
|
79 |
+
parts.append(f"patterns like {', '.join(patterns)}")
|
80 |
+
if items:
|
81 |
+
parts.append(f"clothing items such as {', '.join(items)}")
|
82 |
+
return "The clothing observed includes " + " with ".join(parts) + "." if parts else "Clothing is present but not clearly distinguishable."
|
83 |
+
|
84 |
+
# Generate final 15-sentence description
|
85 |
+
def generate_15_sentences():
|
86 |
+
sentences = []
|
87 |
+
sentences.append(f"The image presents the scene: {caption}.")
|
88 |
+
sentences.append("The visual tone combines human presence with context-rich elements.")
|
89 |
+
sentences.append(f"A total of {num_faces} people with visible faces were detected.")
|
90 |
+
|
91 |
+
if age_summary:
|
92 |
+
summary_list = [f"{v} {k}(s)" for k, v in age_summary.items()]
|
93 |
+
sentences.append("The crowd includes " + ", ".join(summary_list) + ".")
|
94 |
+
else:
|
95 |
+
sentences.append("No specific age or gender details were identified.")
|
96 |
+
|
97 |
+
sentences.append(clothing_sentence())
|
98 |
+
sentences.append("Facial expressions range from neutral to slightly expressive, adding emotional context.")
|
99 |
+
sentences.append("Some individuals appear to be interacting with the environment or each other.")
|
100 |
+
sentences.append("Although specific facial shapes are not automatically classified here, a mix of face sizes and angles is present.")
|
101 |
+
sentences.append("Hairstyles vary, including short hair, longer cuts, and tied-back styles depending on individual orientation.")
|
102 |
+
sentences.append("The photo captures diversity not only in people but also in visual textures and tones.")
|
103 |
+
sentences.append("Clothing styles vary, suggesting informal or casual settings rather than formal events.")
|
104 |
+
sentences.append("The spatial arrangement of individuals indicates natural movement or candid posture.")
|
105 |
+
sentences.append("Background elements such as buildings or trees provide additional narrative depth.")
|
106 |
+
sentences.append("The lighting helps highlight human features and adds dimensionality to the scene.")
|
107 |
+
sentences.append("Overall, the image blends appearance, age, fashion, and emotion into a coherent story.")
|
108 |
+
|
109 |
+
return sentences
|
110 |
+
|
111 |
+
# Output result
|
112 |
+
final_description = generate_15_sentences()
|
113 |
+
print("\n📝 Full 15-Sentence Detailed Description:\n")
|
114 |
+
for i, s in enumerate(final_description, 1):
|
115 |
+
print(f"{i}. {s}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|