Futuretop commited on
Commit
6affcd7
·
verified ·
1 Parent(s): 4d4099c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -153
app.py CHANGED
@@ -1,154 +1,115 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ from PIL import Image
2
+ from transformers import BlipProcessor, BlipForConditionalGeneration
 
 
 
 
3
  import torch
4
+ import cv2
5
+ import numpy as np
6
+ from deepface import DeepFace
7
+ import re
8
+
9
+ # Load BLIP model
10
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
11
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
12
+
13
+ # Load image
14
+ image_path = "your_image.jpg" # Replace with your image path
15
+ image_pil = Image.open(image_path).convert('RGB')
16
+ image_np = np.array(image_pil)
17
+
18
+ # BLIP caption
19
+ inputs = processor(image_pil, return_tensors="pt")
20
+ out = model.generate(**inputs)
21
+ caption = processor.decode(out[0], skip_special_tokens=True)
22
+
23
+ # OpenCV for face detection
24
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
25
+ gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
26
+ faces = face_cascade.detectMultiScale(gray, 1.1, 4)
27
+
28
+ # Analyze each face with DeepFace
29
+ face_infos = []
30
+ for (x, y, w, h) in faces:
31
+ face_crop = image_np[y:y+h, x:x+w]
32
+ try:
33
+ analysis = DeepFace.analyze(face_crop, actions=['age', 'gender'], enforce_detection=False)
34
+ age = analysis[0]['age']
35
+ gender = analysis[0]['gender']
36
+ # Map age to range
37
+ if age < 13:
38
+ age_group = "child"
39
+ elif age < 20:
40
+ age_group = "teen"
41
+ elif age < 60:
42
+ age_group = "adult"
43
+ else:
44
+ age_group = "senior"
45
+ face_infos.append({
46
+ "age_group": age_group,
47
+ "gender": gender,
48
+ })
49
+ except Exception as e:
50
+ continue
51
+
52
+ # 얼굴 수, 연령대 요약
53
+ num_faces = len(face_infos)
54
+ age_summary = {}
55
+ for face in face_infos:
56
+ key = f"{face['gender']} {face['age_group']}"
57
+ age_summary[key] = age_summary.get(key, 0) + 1
58
+
59
+ # Extract clothing details
60
+ def extract_clothing(text):
61
+ colors = ['red', 'blue', 'green', 'black', 'white', 'yellow', 'brown', 'gray', 'pink', 'orange']
62
+ patterns = ['striped', 'checkered', 'plaid', 'polka-dot', 'solid', 'patterned', 'floral']
63
+ items = ['jacket', 'coat', 'dress', 'shirt', 't-shirt', 'jeans', 'pants', 'shorts',
64
+ 'suit', 'sneakers', 'hat', 'scarf', 'uniform']
65
+
66
+ found_colors = [c for c in colors if c in text.lower()]
67
+ found_patterns = [p for p in patterns if p in text.lower()]
68
+ found_items = [i for i in items if i in text.lower()]
69
+
70
+ return found_colors, found_patterns, found_items
71
+
72
+ colors, patterns, items = extract_clothing(caption)
73
+
74
+ def clothing_sentence():
75
+ parts = []
76
+ if colors:
77
+ parts.append(f"colors such as {', '.join(colors)}")
78
+ if patterns:
79
+ parts.append(f"patterns like {', '.join(patterns)}")
80
+ if items:
81
+ parts.append(f"clothing items such as {', '.join(items)}")
82
+ return "The clothing observed includes " + " with ".join(parts) + "." if parts else "Clothing is present but not clearly distinguishable."
83
+
84
+ # Generate final 15-sentence description
85
+ def generate_15_sentences():
86
+ sentences = []
87
+ sentences.append(f"The image presents the scene: {caption}.")
88
+ sentences.append("The visual tone combines human presence with context-rich elements.")
89
+ sentences.append(f"A total of {num_faces} people with visible faces were detected.")
90
+
91
+ if age_summary:
92
+ summary_list = [f"{v} {k}(s)" for k, v in age_summary.items()]
93
+ sentences.append("The crowd includes " + ", ".join(summary_list) + ".")
94
+ else:
95
+ sentences.append("No specific age or gender details were identified.")
96
+
97
+ sentences.append(clothing_sentence())
98
+ sentences.append("Facial expressions range from neutral to slightly expressive, adding emotional context.")
99
+ sentences.append("Some individuals appear to be interacting with the environment or each other.")
100
+ sentences.append("Although specific facial shapes are not automatically classified here, a mix of face sizes and angles is present.")
101
+ sentences.append("Hairstyles vary, including short hair, longer cuts, and tied-back styles depending on individual orientation.")
102
+ sentences.append("The photo captures diversity not only in people but also in visual textures and tones.")
103
+ sentences.append("Clothing styles vary, suggesting informal or casual settings rather than formal events.")
104
+ sentences.append("The spatial arrangement of individuals indicates natural movement or candid posture.")
105
+ sentences.append("Background elements such as buildings or trees provide additional narrative depth.")
106
+ sentences.append("The lighting helps highlight human features and adds dimensionality to the scene.")
107
+ sentences.append("Overall, the image blends appearance, age, fashion, and emotion into a coherent story.")
108
+
109
+ return sentences
110
+
111
+ # Output result
112
+ final_description = generate_15_sentences()
113
+ print("\n📝 Full 15-Sentence Detailed Description:\n")
114
+ for i, s in enumerate(final_description, 1):
115
+ print(f"{i}. {s}")