import json import yaml import os import time import math import pdb from typing import List, Dict from factool.knowledge_qa.tool import google_search from factool.knowledge_qa.tool import local_search from factool.utils.base.pipeline import pipeline class knowledge_qa_pipeline(pipeline): def __init__(self, foundation_model, snippet_cnt, search_type, data_link=None, Embed_link=None): super().__init__('knowledge_qa', foundation_model) if(search_type == 'online'): self.tool = google_search(snippet_cnt = snippet_cnt) elif(search_type == 'local'): self.tool = local_search(snippet_cnt = snippet_cnt, data_link=data_link, embedding_link=Embed_link) with open(os.path.join(self.prompts_path, "claim_extraction.yaml"), 'r') as file: data = yaml.load(file, Loader=yaml.FullLoader) self.claim_prompt = data['knowledge_qa'] with open(os.path.join(self.prompts_path, 'query_generation.yaml'), 'r') as file: data = yaml.load(file, Loader=yaml.FullLoader) self.query_prompt = data['knowledge_qa'] with open(os.path.join(self.prompts_path, 'agreement_verification.yaml'), 'r') as file: data = yaml.load(file, Loader=yaml.FullLoader) self.verification_prompt = data['knowledge_qa'] async def _claim_extraction(self, responses): messages_list = [ [ {"role": "system", "content": self.claim_prompt['system']}, {"role": "user", "content": self.claim_prompt['user'].format(input=response)}, ] for response in responses ] return await self.chat.async_run(messages_list, List) async def _query_generation(self, claims): if claims == None: return ['None'] messages_list = [ [ {"role": "system", "content": self.query_prompt['system']}, {"role": "user", "content": self.query_prompt['user'].format(input=claim['claim'] if 'claim' in claim else '')}, ] for claim in claims ] return await self.chat.async_run(messages_list, List) async def _verification(self, claims, evidences): messages_list = [ [ {"role": "system", "content": self.verification_prompt['system']}, {"role": "user", "content": self.verification_prompt['user'].format(claim=claim['claim'], evidence=str(evidence))}, ] for claim, evidence in zip(claims, evidences) ] return await self.chat.async_run(messages_list, Dict) async def run_with_tool_live(self, responses): claims_in_responses = await self._claim_extraction(responses) queries_in_responses = [] evidences_in_responses = [] sources_in_responses = [] verifications_in_responses = [] #pdb.set_trace() for claims_in_response in claims_in_responses: queries = await self._query_generation(claims_in_response) queries_in_responses.append(queries) search_outputs_for_claims = await self.tool.run(queries) evidences = [output["content"] for search_outputs_for_claim in search_outputs_for_claims for output in search_outputs_for_claim] evidences_in_responses.append(evidences) sources = [output["source"] for search_outputs_for_claim in search_outputs_for_claims for output in search_outputs_for_claim] sources_in_responses.append(sources) verifications = await self._verification(claims_in_response, evidences) verifications_in_responses.append(verifications) return claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses async def run_with_tool_live_without_claim_extraction(self, claims): queries = await self._query_generation(claims) evidences = await self.tool.run(queries) final_response = await self._verification(claims, evidences) for i in range(len(final_response)): if final_response[i] != None: final_response[i]['queries'] = queries[i] final_response[i]['evidences'] = evidences[i] return final_response async def run_with_tool_api_call(self, prompts, responses): batch_size = 5 num_batches = math.ceil(len(prompts) / batch_size) self.sample_list = [{"prompt": prompt, "response": response, "category": 'kbqa'} for prompt, response in zip(prompts, responses)] for i in range(num_batches): print(i) batch_start = i * batch_size batch_end = min((i + 1) * batch_size, len(responses)) claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses = await self.run_with_tool_live(responses[batch_start:batch_end]) for j, (claims_in_response, queries_in_response, evidences_in_response, sources_in_response, verifications_in_response) in enumerate(zip(claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses)): index = batch_start + j if claims_in_response != None: for k, claim in enumerate(claims_in_response): if verifications_in_response[k] != None: if claim != None: verifications_in_response[k].update({'claim': claim['claim']}) else: verifications_in_response[k].update({'claim': 'None'}) evidences_with_source = [] for evidence, source in zip(evidences_in_response, sources_in_response): evidences_with_source.append({'evidence': evidence, 'source': source}) self.sample_list[index].update({ 'claims': claims_in_response, 'queries': queries_in_response, # 'evidences': evidences_in_response, # 'sources': sources_in_response, 'evidences': evidences_with_source, 'claim_level_factuality': verifications_in_response, 'response_level_factuality': all([verification['factuality'] if verification != None else True for verification in verifications_in_response]) }) return self.sample_list async def run_with_tool_dataset(self, annotated_dataset_path: str, with_tool_classified_dataset_path: str, rerun: bool = False, rerun_indices: list = []): data_path = with_tool_classified_dataset_path if rerun else annotated_dataset_path with open(data_path, 'r') as f: data = [json.loads(line) for line in f] self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] batch_size = 4 num_batches = math.ceil(len(rerun_elements) / batch_size) # 5 for i in range(num_batches): print(i) batch_start = i * batch_size batch_end = min((i + 1) * batch_size, len(rerun_elements)) responses = await self.run_with_tool_live_without_claim_extraction(rerun_elements[batch_start:batch_end]) for j, response in enumerate(responses): index = batch_start + j if rerun == False else rerun_indices[batch_start + j] if response is None: self.sample_list[index].update({ 'with_tool_classification': 'None', 'with_tool_reasoning': 'None', 'queries': 'None', 'evidences': 'None' }) else: self.sample_list[index].update({ 'with_tool_classification': response.get('factuality', 'None'), 'with_tool_reasoning': response.get('reasoning', 'None'), 'queries': response.get('queries', 'None'), 'evidences': response.get('evidences', 'None') }) # save everything after each batch to prevent data loss with open(with_tool_classified_dataset_path, 'w') as f: for item in self.sample_list: json_str = json.dumps(item) f.write(json_str + '\n') async def run_self_check_live(self, fewshot, batch): user_prompt_key = 'user_3_shot_CoT' if fewshot else 'user_zero_shot_CoT' messages_list = [ [ {"role": "system", "content": self.self_check_prompt['system']}, {"role": "user", "content": self.self_check_prompt[user_prompt_key].format(claim=response['claim'])}, ] for response in batch ] return await self.chat.async_run(messages_list, Dict) async def run_self_check_dataset(self, annotated_dataset_path: str, self_check_classified_dataset_path: str, fewshot: bool = False, rerun: bool = False, rerun_indices: list = []): data_path = annotated_dataset_path if not rerun else self_check_classified_dataset_path with open(data_path, 'r') as f: data = [json.loads(line) for line in f] self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] batch_size = 10 num_batches = math.ceil(len(rerun_elements) / batch_size) for i in range(num_batches): print(i) batch_start = i * batch_size batch_end = min((i + 1) * batch_size, len(rerun_elements)) batch = rerun_elements[batch_start:batch_end] responses = await self.run_self_check_live(fewshot, batch) for j, response in enumerate(responses): index = batch_start + j if not rerun else rerun_indices[batch_start + j] if response is None: self.sample_list[index].update({ 'self_check_classification': 'None', 'self_check_reasoning': 'None' }) else: self.sample_list[index].update({ 'self_check_classification': response.get('factuality', 'None'), 'self_check_reasoning': response.get('reasoning', 'None') }) # save everything after each batch to prevent data loss with open(self_check_classified_dataset_path, 'w') as f: for item in self.sample_list: json_str = json.dumps(item) f.write(json_str + '\n')