File size: 6,819 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------

import math
import sys
sys.path.append("..")
from typing import Iterable

import torch
import torch.nn.functional as F

import util.misc as misc
import util.lr_sched as lr_sched


def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
                    log_writer=None, args=None):
    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 20

    accum_iter = args.accum_iter

    optimizer.zero_grad()

    kl_weight = 25e-3 #TODO: try to modify this, it is 1e-3 originally, large kl ease the training of diffusion, but decrease in VAE results

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    for data_iter_step, data_batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):

        # we use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)

        points = data_batch['points'].to(device, non_blocking=True)
        labels = data_batch['labels'].to(device, non_blocking=True)
        surface = data_batch['surface'].to(device, non_blocking=True)
        # print(points.shape)
        with torch.cuda.amp.autocast(enabled=False):
            outputs = model(surface, points)
            if 'kl' in outputs:
                loss_kl = outputs['kl']
                #print(loss_kl.shape)
                loss_kl = torch.sum(loss_kl) / loss_kl.shape[0]
            else:
                loss_kl = None

            outputs = outputs['logits']

            num_samples=outputs.shape[1]//2
            #print(num_samples)
            loss_vol = criterion(outputs[:, :num_samples], labels[:, :num_samples])
            loss_near = criterion(outputs[:, num_samples:], labels[:, num_samples:])

            if loss_kl is not None:
                loss = loss_vol + 0.1 * loss_near + kl_weight * loss_kl
            else:
                loss = loss_vol + 0.1 * loss_near

        loss_value = loss.item()

        threshold = 0

        pred = torch.zeros_like(outputs[:, :num_samples])
        pred[outputs[:, :num_samples] >= threshold] = 1

        accuracy = (pred == labels[:, :num_samples]).float().sum(dim=1) / labels[:, :num_samples].shape[1]
        accuracy = accuracy.mean()
        intersection = (pred * labels[:, :num_samples]).sum(dim=1)
        union = (pred + labels[:, :num_samples]).gt(0).sum(dim=1) + 1e-5
        iou = intersection * 1.0 / union
        iou = iou.mean()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        loss /= accum_iter
        loss_scaler(loss, optimizer, clip_grad=max_norm,
                    parameters=model.parameters(), create_graph=False,
                    update_grad=(data_iter_step + 1) % accum_iter == 0)
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)

        metric_logger.update(loss_vol=loss_vol.item())
        metric_logger.update(loss_near=loss_near.item())

        if loss_kl is not None:
            metric_logger.update(loss_kl=loss_kl.item())

        metric_logger.update(iou=iou.item())

        min_lr = 10.
        max_lr = 0.
        for group in optimizer.param_groups:
            min_lr = min(min_lr, group["lr"])
            max_lr = max(max_lr, group["lr"])

        metric_logger.update(lr=max_lr)

        loss_value_reduce = misc.all_reduce_mean(loss_value)
        iou_reduce=misc.all_reduce_mean(iou)
        if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
            log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('iou', iou_reduce, epoch_1000x)
            log_writer.add_scalar('lr', max_lr, epoch_1000x)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def evaluate(data_loader, model, device):
    criterion = torch.nn.BCEWithLogitsLoss()

    metric_logger = misc.MetricLogger(delimiter="  ")
    header = 'Test:'

    # switch to evaluation mode
    model.eval()

    for data_batch in metric_logger.log_every(data_loader, 50, header):

        points = data_batch['points'].to(device, non_blocking=True)
        labels = data_batch['labels'].to(device, non_blocking=True)
        surface = data_batch['surface'].to(device, non_blocking=True)
        # compute output
        with torch.cuda.amp.autocast(enabled=False):

            outputs = model(surface, points)
            if 'kl' in outputs:
                loss_kl = outputs['kl']
                loss_kl = torch.sum(loss_kl) / loss_kl.shape[0]
            else:
                loss_kl = None

            outputs = outputs['logits']

            loss = criterion(outputs, labels)

        threshold = 0

        pred = torch.zeros_like(outputs)
        pred[outputs >= threshold] = 1

        accuracy = (pred == labels).float().sum(dim=1) / labels.shape[1]
        accuracy = accuracy.mean()
        intersection = (pred * labels).sum(dim=1)
        union = (pred + labels).gt(0).sum(dim=1)
        iou = intersection * 1.0 / union + 1e-5
        iou = iou.mean()

        batch_size = points.shape[0]
        metric_logger.update(loss=loss.item())
        metric_logger.meters['iou'].update(iou.item(), n=batch_size)

        if loss_kl is not None:
            metric_logger.update(loss_kl=loss_kl.item())

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print('* iou {iou.global_avg:.3f} loss {losses.global_avg:.3f}'
          .format(iou=metric_logger.iou, losses=metric_logger.loss))

    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}