File size: 1,233 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
import torch.nn.functional as F

# Resnet Blocks
class ResnetBlockFC(nn.Module):
    ''' Fully connected ResNet Block class.
    Args:
        size_in (int): input dimension
        size_out (int): output dimension
        size_h (int): hidden dimension
    '''

    def __init__(self, size_in, size_out=None, size_h=None):
        super().__init__()
        # Attributes
        if size_out is None:
            size_out = size_in

        if size_h is None:
            size_h = min(size_in, size_out)

        self.size_in = size_in
        self.size_h = size_h
        self.size_out = size_out
        # Submodules
        self.fc_0 = nn.Linear(size_in, size_h)
        self.fc_1 = nn.Linear(size_h, size_out)
        self.actvn = nn.ReLU()

        if size_in == size_out:
            self.shortcut = None
        else:
            self.shortcut = nn.Linear(size_in, size_out, bias=False)
        # Initialization
        nn.init.zeros_(self.fc_1.weight)

    def forward(self, x):
        net = self.fc_0(self.actvn(x))
        dx = self.fc_1(self.actvn(net))

        if self.shortcut is not None:
            x_s = self.shortcut(x)
        else:
            x_s = x

        return x_s + dx