File size: 5,484 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------

import math
import sys
from typing import Iterable

import torch
import torch.nn.functional as F

import util.misc as misc
import util.lr_sched as lr_sched
import numpy as np
import os
import pickle as p
import torch.distributed as dist
import time
from models.modules.encoder import DiagonalGaussianDistribution


def train_one_epoch(model: torch.nn.Module, ae: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
                    log_writer=None,log_dir=None, args=None):
    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 20

    accum_iter = args.accum_iter
    use_cls_free= args.use_cls_free

    optimizer.zero_grad()

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    for data_iter_step, data_batch in enumerate(
            metric_logger.log_every(data_loader, print_freq, header)):

        # we use a per iteration (instead of per epoch) lr scheduler
        if not args.constant_lr:
            if data_iter_step % accum_iter == 0:
                lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)

        input_dict=model.module.prepare_data(data_batch)
        with torch.cuda.amp.autocast(enabled=False):
            loss_all = criterion(model,input_dict,classifier_free=use_cls_free)
            loss=loss_all.mean()

        loss_value = loss.item()
        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        loss /= accum_iter
        loss_scaler(loss, optimizer, clip_grad=max_norm,
                    parameters=model.parameters(), create_graph=False,
                    update_grad=(data_iter_step + 1) % accum_iter == 0)
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)

        min_lr = 10.
        max_lr = 0.
        for group in optimizer.param_groups:
            min_lr = min(min_lr, group["lr"])
            max_lr = max(max_lr, group["lr"])

        metric_logger.update(lr=max_lr)

        loss_value_reduce = misc.all_reduce_mean(loss_value)
        if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
            log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('lr', max_lr, epoch_1000x)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}

@torch.no_grad()
def evaluate_reconstruction(data_loader, model, ae, criterion, device):
    metric_logger = misc.MetricLogger(delimiter="  ")
    header = 'Test:'

    # switch to evaluation mode
    model.eval()
    for data_batch in metric_logger.log_every(data_loader, 50, header):
        with torch.no_grad():
            input_dict=model.module.prepare_data(data_batch)
            loss_all = criterion(model, input_dict,classifier_free=False)
            loss = loss_all.mean()
            sample_input=model.module.prepare_sample_data(data_batch)
            sampled_array = model.module.sample(sample_input).float()
            sampled_array = torch.nn.functional.interpolate(sampled_array, scale_factor=2, mode="bilinear")
            eval_input=model.module.prepare_eval_data(data_batch)
            samples=eval_input["samples"]
            labels=eval_input["labels"]
            for j in range(sampled_array.shape[0]):
                output = ae.decode(sampled_array[j:j + 1], samples[j:j+1]).squeeze(-1)
                pred = torch.zeros_like(output)
                pred[output >= 0.0] = 1
                label=labels[j:j+1]

                accuracy = (pred == label).float().sum(dim=1) / label.shape[1]
                accuracy = accuracy.mean()
                intersection = (pred * label).sum(dim=1)
                union = (pred + label).gt(0).sum(dim=1)
                iou = intersection * 1.0 / union + 1e-5
                iou = iou.mean()

                metric_logger.update(iou=iou.item())
                metric_logger.update(accuracy=accuracy.item())
        metric_logger.update(loss=loss.item())
    metric_logger.synchronize_between_processes()
    print('* iou {ious.global_avg:.3f}'
          .format(ious=metric_logger.iou))
    print('* accuracy {accuracies.global_avg:.3f}'
          .format(accuracies=metric_logger.accuracy))
    print('* loss {losses.global_avg:.3f}'
          .format(losses=metric_logger.loss))

    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}