File size: 11,256 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import sys
sys.path.append("..")
sys.path.append(".")
import numpy as np

import mcubes
import os
import torch

import trimesh

from datasets.SingleView_dataset import Object_PartialPoints_MultiImg
from datasets.transforms import Scale_Shift_Rotate
from models import get_model
from pathlib import Path
import open3d as o3d
from configs.config_utils import CONFIG
import cv2
from util.misc import MetricLogger
import scipy
from pyTorchChamferDistance.chamfer_distance import ChamferDistance
from util.projection_utils import draw_proj_image
from util import misc
import time
dist_chamfer=ChamferDistance()


def pc_metrics(p1, p2, space_ext=2, fscore_param=0.01, scale=.5):
    """ p2: reference ponits
        (B, N, 3)
    """
    p1, p2, space_ext = p1 * scale, p2 * scale, space_ext * scale
    f_thresh = space_ext * fscore_param

    #print(p1.shape,p2.shape)
    d1, d2, _, _ = dist_chamfer(p1, p2)
    #print(d1.shape,d2.shape)
    d1sqrt, d2sqrt = (d1 ** .5), (d2 ** .5)
    chamfer_L1 = d1sqrt.mean(axis=-1) + d2sqrt.mean(axis=-1)
    chamfer_L2 = d1.mean(axis=-1) + d2.mean(axis=-1)
    precision = (d1sqrt < f_thresh).sum(axis=-1).float() / p1.shape[1]
    recall = (d2sqrt < f_thresh).sum(axis=-1).float() / p2.shape[1]
    #print(precision,recall)
    fscore = 2 * torch.div(recall * precision, recall + precision)
    fscore[fscore == float("inf")] = 0
    return chamfer_L1,chamfer_L2,fscore

if __name__ == "__main__":

    parser = argparse.ArgumentParser('this script can be used to compute iou fscore chamfer distance before icp align', add_help=False)
    parser.add_argument('--configs',type=str,required=True)
    parser.add_argument('--output_folder', type=str, default="../output_result/Triplane_diff_parcond_0926")
    parser.add_argument('--dm-pth',type=str)
    parser.add_argument('--ae-pth',type=str)
    parser.add_argument('--data-pth', type=str,default="../")
    parser.add_argument('--save_mesh',action="store_true",default=False)
    parser.add_argument('--save_image',action="store_true",default=False)
    parser.add_argument('--save_par_points', action="store_true", default=False)
    parser.add_argument('--save_proj_img',action="store_true",default=False)
    parser.add_argument('--save_surface',action="store_true",default=False)
    parser.add_argument('--reso',default=128,type=int)
    parser.add_argument('--category',nargs="+",type=str)
    parser.add_argument('--eval_cd',action="store_true",default=False)
    parser.add_argument('--use_augmentation',action="store_true",default=False)

    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    args = parser.parse_args()
    misc.init_distributed_mode(args)
    config_path=args.configs
    config=CONFIG(config_path)
    dataset_config=config.config['dataset']
    dataset_config['data_path']=args.data_pth
    if "arkit" in args.category[0]:
        split_filename=dataset_config['keyword']+'_val_par_img.json'
    else:
        split_filename='val_par_img.json'

    transform = None
    if args.use_augmentation:
        transform=Scale_Shift_Rotate(jitter_partial=False,jitter=False,use_scale=False,angle=(-10,10),shift=(-0.1,0.1))
    dataset_val = Object_PartialPoints_MultiImg(dataset_config['data_path'], split_filename=split_filename,categories=args.category,split="val",
                                transform=transform, sampling=False,
                                num_samples=1024, return_surface=True,ret_sample=True,
                                surface_sampling=True, par_pc_size=dataset_config['par_pc_size'],surface_size=100000,
                                load_proj_mat=True,load_image=True,load_org_img=True,load_triplane=None,par_point_aug=None,replica=1)
    batch_size=1

    num_tasks = misc.get_world_size()
    global_rank = misc.get_rank()
    val_sampler = torch.utils.data.DistributedSampler(
        dataset_val, num_replicas=num_tasks, rank=global_rank,
        shuffle=False)  # shu
    dataloader_val=torch.utils.data.DataLoader(
        dataset_val,
        sampler=val_sampler,
        batch_size=batch_size,
        num_workers=10,
        shuffle=False,
    )
    output_folder=args.output_folder

    device = torch.device('cuda')

    ae_config=config.config['model']['ae']
    dm_config=config.config['model']['dm']
    ae_model=get_model(ae_config).to(device)
    if args.category[0] == "all":
        dm_config["use_cat_embedding"]=True
    else:
        dm_config["use_cat_embedding"] = False
    dm_model=get_model(dm_config).to(device)
    ae_model.eval()
    dm_model.eval()
    ae_model.load_state_dict(torch.load(args.ae_pth)['model'])
    dm_model.load_state_dict(torch.load(args.dm_pth)['model'])

    density = args.reso
    gap = 2.2 / density
    x = np.linspace(-1.1, 1.1, int(density + 1))
    y = np.linspace(-1.1, 1.1,  int(density + 1))
    z = np.linspace(-1.1, 1.1,  int(density + 1))
    xv, yv, zv = np.meshgrid(x, y, z,indexing='ij')
    grid = torch.from_numpy(np.stack([xv, yv, zv]).astype(np.float32)).view(3, -1).transpose(0, 1)[None].to(device,non_blocking=True)

    metric_logger=MetricLogger(delimiter="  ")
    header = 'Test:'

    with torch.no_grad():
        for data_batch in metric_logger.log_every(dataloader_val,10, header):
            # if data_iter_step==100:
            #     break
            partial_name = data_batch['partial_name']
            class_name = data_batch['class_name']
            model_ids=data_batch['model_id']
            surface=data_batch['surface']
            proj_matrices=data_batch['proj_mat']
            sample_points=data_batch["points"].cuda().float()
            labels=data_batch["labels"].cuda().float()
            sample_input=dm_model.prepare_sample_data(data_batch)
            #t1 = time.time()
            sampled_array = dm_model.sample(sample_input,num_steps=36).float()
            #t2 = time.time()
            #sample_time = t2 - t1
            #print("sampling time %f" % (sample_time))
            sampled_array = torch.nn.functional.interpolate(sampled_array, scale_factor=2, mode="bilinear")
            for j in range(sampled_array.shape[0]):
                if args.save_mesh | args.save_par_points | args.save_image:
                    object_folder = os.path.join(output_folder, class_name[j], model_ids[j])
                    Path(object_folder).mkdir(parents=True, exist_ok=True)
                '''calculate iou'''
                sample_point=sample_points[j:j+1]
                sample_output=ae_model.decode(sampled_array[j:j + 1],sample_point)
                sample_pred=torch.zeros_like(sample_output)
                sample_pred[sample_output>=0.0]=1
                label=labels[j:j+1]
                intersection = (sample_pred * label).sum(dim=1)
                union = (sample_pred + label).gt(0).sum(dim=1)
                iou = intersection * 1.0 / union + 1e-5
                iou = iou.mean()
                metric_logger.update(iou=iou.item())

                if args.use_augmentation:
                    tran_mat=data_batch["tran_mat"][j].numpy()
                    mat_save_path='{}/tran_mat.npy'.format(object_folder)
                    np.save(mat_save_path,tran_mat)

                if args.eval_cd:
                    grid_list=torch.split(grid,128**3,dim=1)
                    output_list=[]
                    #t3=time.time()
                    for sub_grid in grid_list:
                        output_list.append(ae_model.decode(sampled_array[j:j + 1],sub_grid))
                    output=torch.cat(output_list,dim=1)
                    #t4=time.time()
                    #decoding_time=t4-t3
                    #print("decoding time:",decoding_time)
                    logits = output[j].detach()

                    volume = logits.view(density + 1, density + 1, density + 1).cpu().numpy()
                    verts, faces = mcubes.marching_cubes(volume, 0)

                    verts *= gap
                    verts -= 1.1
                    #print("vertice max min",np.amin(verts,axis=0),np.amax(verts,axis=0))


                    m = trimesh.Trimesh(verts, faces)
                    '''calculate fscore and chamfer distance'''
                    result_surface,_=trimesh.sample.sample_surface(m,100000)
                    gt_surface=surface[j]
                    assert gt_surface.shape[0]==result_surface.shape[0]

                    result_surface_gpu = torch.from_numpy(result_surface).float().cuda().unsqueeze(0)
                    gt_surface_gpu = gt_surface.float().cuda().unsqueeze(0)
                    _,chamfer_L2,fscore=pc_metrics(result_surface_gpu,gt_surface_gpu)
                    metric_logger.update(chamferl2=chamfer_L2*1000.0)
                    metric_logger.update(fscore=fscore)

                    if args.save_mesh:
                        m.export('{}/{}_mesh.ply'.format(object_folder, partial_name[j]))

                if args.save_par_points:
                    par_point_input = data_batch['par_points'][j].numpy()
                    #print("input max min", np.amin(par_point_input, axis=0), np.amax(par_point_input, axis=0))
                    par_point_o3d = o3d.geometry.PointCloud()
                    par_point_o3d.points = o3d.utility.Vector3dVector(par_point_input[:, 0:3])
                    o3d.io.write_point_cloud('{}/{}.ply'.format(object_folder, partial_name[j]), par_point_o3d)
                if args.save_image:
                    image_list=data_batch["org_image"]
                    for idx,image in enumerate(image_list):
                        image=image[0].numpy().astype(np.uint8)
                        if args.save_proj_img:
                            proj_mat=proj_matrices[j,idx].numpy()
                            proj_image=draw_proj_image(image,proj_mat,result_surface)
                            proj_save_path = '{}/proj_{}.jpg'.format(object_folder, idx)
                            cv2.imwrite(proj_save_path,proj_image)
                        save_path='{}/{}.jpg'.format(object_folder, idx)
                        cv2.imwrite(save_path,image)
                if args.save_surface:
                    surface=gt_surface.numpy().astype(np.float32)
                    surface_o3d = o3d.geometry.PointCloud()
                    surface_o3d.points = o3d.utility.Vector3dVector(surface[:, 0:3])
                    o3d.io.write_point_cloud('{}/surface.ply'.format(object_folder), surface_o3d)
        metric_logger.synchronize_between_processes()
        print('* iou {ious.global_avg:.3f}'
              .format(ious=metric_logger.iou))
        if args.eval_cd:
            print('* chamferl2 {chamferl2s.global_avg:.3f}'
                  .format(chamferl2s=metric_logger.chamferl2))
            print('* fscore {fscores.global_avg:.3f}'
                  .format(fscores=metric_logger.fscore))