LASA / datasets /SingleView_dataset.py
HaolinLiu's picture
first commit of codes and update readme.md
cc9780d
raw
history blame
19.3 kB
import os
import glob
import random
import yaml
import torch
from torch.utils import data
import numpy as np
import json
from PIL import Image
import h5py
import torch.distributed as dist
import open3d as o3d
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
import pickle as p
import time
import cv2
from torchvision import transforms
import copy
from datasets.taxonomy import category_map_from_synthetic as category_ids
class Object_Occ(data.Dataset):
def __init__(self, dataset_folder, split, categories=['03001627', "future_chair", 'ABO_chair'], transform=None,
sampling=True,
num_samples=4096, return_surface=True, surface_sampling=True, surface_size=2048, replica=16):
self.pc_size = surface_size
self.transform = transform
self.num_samples = num_samples
self.sampling = sampling
self.split = split
self.dataset_folder = dataset_folder
self.return_surface = return_surface
self.surface_sampling = surface_sampling
self.dataset_folder = dataset_folder
self.point_folder = os.path.join(self.dataset_folder, 'occ_data')
self.mesh_folder = os.path.join(self.dataset_folder, 'other_data')
if categories is None:
categories = os.listdir(self.point_folder)
categories = [c for c in categories if
os.path.isdir(os.path.join(self.point_folder, c)) and c.startswith('0')]
categories.sort()
print(categories)
self.models = []
for c_idx, c in enumerate(categories):
subpath = os.path.join(self.point_folder, c)
print(subpath)
assert os.path.isdir(subpath)
split_file = os.path.join(subpath, split + '.lst')
with open(split_file, 'r') as f:
models_c = f.readlines()
models_c = [item.rstrip('\n') for item in models_c]
for m in models_c[:]:
if len(m)<=1:
continue
if m.endswith('.npz'):
model_id = m[:-4]
else:
model_id = m
self.models.append({
'category': c, 'model': model_id
})
self.replica = replica
def __getitem__(self, idx):
if self.replica >= 1:
idx = idx % len(self.models)
else:
random_segment = random.randint(0, int(1 / self.replica) - 1)
idx = int(random_segment * self.replica * len(self.models) + idx)
category = self.models[idx]['category']
model = self.models[idx]['model']
point_path = os.path.join(self.point_folder, category, model + '.npz')
# print(point_path)
try:
start_t = time.time()
with np.load(point_path) as data:
vol_points = data['vol_points']
vol_label = data['vol_label']
near_points = data['near_points']
near_label = data['near_label']
end_t = time.time()
# print("loading time %f"%(end_t-start_t))
except Exception as e:
print(e)
print(point_path)
with open(point_path.replace('.npz', '.npy'), 'rb') as f:
scale = np.load(f).item()
# scale=1.0
if self.return_surface:
pc_path = os.path.join(self.mesh_folder, category, '4_pointcloud', model + '.npz')
with np.load(pc_path) as data:
try:
surface = data['points'].astype(np.float32)
except:
print(pc_path,"has problems")
raise AttributeError
surface = surface * scale
if self.surface_sampling:
ind = np.random.default_rng().choice(surface.shape[0], self.pc_size, replace=False)
surface = surface[ind]
surface = torch.from_numpy(surface)
if self.sampling:
'''need to conduct label balancing'''
vol_ind=np.random.default_rng().choice(vol_points.shape[0], self.num_samples,
replace=(vol_points.shape[0]<self.num_samples))
near_ind=np.random.default_rng().choice(near_points.shape[0], self.num_samples,
replace=(near_points.shape[0]<self.num_samples))
vol_points=vol_points[vol_ind]
vol_label=vol_label[vol_ind]
near_points=near_points[near_ind]
near_label=near_label[near_ind]
vol_points = torch.from_numpy(vol_points)
vol_label = torch.from_numpy(vol_label).float()
if self.split == 'train':
near_points = torch.from_numpy(near_points)
near_label = torch.from_numpy(near_label).float()
points = torch.cat([vol_points, near_points], dim=0)
labels = torch.cat([vol_label, near_label], dim=0)
else:
points = vol_points
labels = vol_label
tran_mat=np.eye(4)
if self.transform:
surface, points, _,_, tran_mat = self.transform(surface, points)
data_dict = {
"points": points,
"labels": labels,
"category_ids": category_ids[category],
"model_id": model,
"tran_mat":tran_mat,
"category":category,
}
if self.return_surface:
data_dict["surface"] = surface
return data_dict
def __len__(self):
if self.split != 'train':
return len(self.models)
else:
return int(len(self.models) * self.replica)
class Object_PartialPoints_MultiImg(data.Dataset):
def __init__(self, dataset_folder, split, split_filename, categories=['03001627', 'future_chair', 'ABO_chair'],
transform=None, sampling=True, num_samples=4096,
return_surface=True, ret_sample=True,surface_sampling=True,
surface_size=20000,par_pc_size=2048, par_point_aug=None,par_prefix="aug7_",
load_proj_mat=False,load_image=False,load_org_img=False,max_img_length=5,load_triplane=True,replica=2,
eval_multiview=False,scene_id=None,num_objects=-1):
self.surface_size = surface_size
self.par_pc_size=par_pc_size
self.transform = transform
self.num_samples = num_samples
self.sampling = sampling
self.split = split
self.par_point_aug=par_point_aug
self.par_prefix=par_prefix
self.dataset_folder = dataset_folder
self.return_surface = return_surface
self.ret_sample=ret_sample
self.surface_sampling = surface_sampling
self.load_proj_mat=load_proj_mat
self.load_img=load_image
self.load_org_img=load_org_img
self.load_triplane=load_triplane
self.max_img_length=max_img_length
self.eval_multiview=eval_multiview
self.dataset_folder = dataset_folder
self.point_folder = os.path.join(self.dataset_folder, 'occ_data')
self.mesh_folder = os.path.join(self.dataset_folder, 'other_data')
if scene_id is not None:
scene_model_map_path=os.path.join(self.dataset_folder,"modelid_in_sceneid.json")
with open(scene_model_map_path,'r') as f:
scene_model_map=json.load(f)
valid_modelid=scene_model_map[scene_id]
if categories is None:
categories = os.listdir(self.point_folder)
categories = [c for c in categories if
os.path.isdir(os.path.join(self.point_folder, c)) and c.startswith('0')]
categories.sort()
print(categories)
self.models = []
self.model_images_names = {}
for c_idx, c in enumerate(categories):
cat_count=0
subpath = os.path.join(self.point_folder, c)
print(subpath)
assert os.path.isdir(subpath)
split_file = os.path.join(subpath, split_filename)
with open(split_file, 'r') as f:
splits = json.load(f)
for item in splits:
# print(item)
model_id = item['model_id']
if scene_id is not None and model_id not in valid_modelid:
continue
image_filenames = item['image_filenames']
partial_filenames = item['partial_filenames']
if len(image_filenames)==0 or len(partial_filenames)==0:
continue
self.model_images_names[model_id] = image_filenames
if split=="train":
self.models += [
{'category': c, 'model': model_id, "partial_filenames": partial_filenames,
"image_filenames": image_filenames}
]
else:
if self.eval_multiview:
for length in range(0,len(image_filenames)):
self.models+=[
{'category': c, 'model': model_id, "partial_filenames": partial_filenames[0:1],
"image_filenames": image_filenames[0:length+1]}
]
self.models += [
{'category': c, 'model': model_id, "partial_filenames": partial_filenames[0:1],
"image_filenames": image_filenames}
]
if num_objects!=-1:
indexes=np.linspace(0,len(self.models)-1,num=num_objects).astype(np.int32)
self.models = [self.models[i] for i in indexes]
self.replica = replica
def load_samples(self,point_path):
try:
start_t = time.time()
with np.load(point_path) as data:
vol_points = data['vol_points']
vol_label = data['vol_label']
near_points = data['near_points']
near_label = data['near_label']
end_t = time.time()
# print("reading time %f"%(end_t-start_t))
except Exception as e:
print(e)
print(point_path)
return vol_points,vol_label,near_points,near_label
def load_surface(self,surface_path,scale):
with np.load(surface_path) as data:
surface = data['points'].astype(np.float32)
surface = surface * scale
if self.surface_sampling:
ind = np.random.default_rng().choice(surface.shape[0], self.surface_size, replace=False)
surface = surface[ind]
surface = torch.from_numpy(surface).float()
return surface
def load_par_points(self,partial_path,scale):
# print(partial_path)
par_point_o3d = o3d.io.read_point_cloud(partial_path)
par_points = np.asarray(par_point_o3d.points)
par_points = par_points * scale
replace = par_points.shape[0] < self.par_pc_size
ind = np.random.default_rng().choice(par_points.shape[0], self.par_pc_size, replace=replace)
par_points = par_points[ind]
par_points = torch.from_numpy(par_points).float()
return par_points
def process_samples(self,vol_points,vol_label,near_points,near_label):
if self.sampling:
ind = np.random.default_rng().choice(vol_points.shape[0], self.num_samples, replace=False)
vol_points = vol_points[ind]
vol_label = vol_label[ind]
ind = np.random.default_rng().choice(near_points.shape[0], self.num_samples, replace=False)
near_points = near_points[ind]
near_label = near_label[ind]
vol_points = torch.from_numpy(vol_points)
vol_label = torch.from_numpy(vol_label).float()
if self.split == 'train':
near_points = torch.from_numpy(near_points)
near_label = torch.from_numpy(near_label).float()
points = torch.cat([vol_points, near_points], dim=0)
labels = torch.cat([vol_label, near_label], dim=0)
else:
ind = np.random.default_rng().choice(vol_points.shape[0], 100000, replace=False)
points = vol_points[ind]
labels = vol_label[ind]
return points,labels
def __getitem__(self, idx):
if self.replica >= 1:
idx = idx % len(self.models)
else:
random_segment = random.randint(0, int(1 / self.replica) - 1)
idx = int(random_segment * self.replica * len(self.models) + idx)
category = self.models[idx]['category']
model = self.models[idx]['model']
#image_filenames = self.model_images_names[model]
image_filenames = self.models[idx]["image_filenames"]
if self.split=="train":
n_frames = np.random.randint(min(2,len(image_filenames)), min(len(image_filenames) + 1, self.max_img_length + 1))
img_indexes = np.random.choice(len(image_filenames), n_frames,
replace=(n_frames > len(image_filenames))).tolist()
else:
if self.eval_multiview:
'''use all images'''
n_frames=len(image_filenames)
img_indexes=[i for i in range(n_frames)]
else:
n_frames = min(len(image_filenames),self.max_img_length)
img_indexes=np.linspace(start=0,stop=len(image_filenames)-1,num=n_frames).astype(np.int32)
partial_filenames = self.models[idx]['partial_filenames']
par_index = np.random.choice(len(partial_filenames), 1)[0]
partial_name = partial_filenames[par_index]
vol_points,vol_label,near_points,near_label=None,None,None,None
points,labels=None,None
point_path = os.path.join(self.point_folder, category, model + '.npz')
if self.ret_sample:
vol_points,vol_label,near_points,near_label=self.load_samples(point_path)
points,labels = self.process_samples(vol_points, vol_label, near_points,near_label)
with open(point_path.replace('.npz', '.npy'), 'rb') as f:
scale = np.load(f).item()
surface=None
pc_path = os.path.join(self.mesh_folder, category, '4_pointcloud', model + '.npz')
if self.return_surface:
surface=self.load_surface(pc_path,scale)
partial_path = os.path.join(self.mesh_folder, category, "5_partial_points", model, partial_name)
if self.par_point_aug is not None and random.random()<self.par_point_aug: #add augmentation
par_aug_path=os.path.join(self.mesh_folder, category, "5_partial_points", model, self.par_prefix+partial_name)
#print(par_aug_path,os.path.exists(par_aug_path))
if os.path.exists(par_aug_path):
partial_path=par_aug_path
else:
raise FileNotFoundError
par_points=self.load_par_points(partial_path,scale)
image_list=[]
valid_frames=[]
image_namelist=[]
if self.load_img:
for img_index in img_indexes:
image_name=image_filenames[img_index]
image_feat_path=os.path.join(self.mesh_folder,category,"7_img_features",model,image_name[:-4]+'.npz')
image=np.load(image_feat_path)["img_features"]
image_list.append(torch.from_numpy(image).float())
valid_frames.append(True)
image_namelist.append(image_name)
while len(image_list)<self.max_img_length:
image_list.append(torch.from_numpy(np.zeros(image_list[0].shape).astype(np.float32)).float())
valid_frames.append(False)
org_img_list=[]
if self.load_org_img:
for img_index in img_indexes:
image_name = image_filenames[img_index]
image_path = os.path.join(self.mesh_folder, category, "6_images", model,
image_name)
org_image = cv2.imread(image_path)
org_image = cv2.resize(org_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR)
org_img_list.append(org_image)
proj_mat=None
proj_mat_list=[]
if self.load_proj_mat:
for img_index in img_indexes:
image_name = image_filenames[img_index]
proj_mat_path = os.path.join(self.mesh_folder, category, "8_proj_matrix", model, image_name[:-4]+".npy")
proj_mat=np.load(proj_mat_path)
proj_mat_list.append(proj_mat)
while len(proj_mat_list)<self.max_img_length:
proj_mat_list.append(np.eye(4))
tran_mat=None
if self.load_triplane:
triplane_folder=os.path.join(self.mesh_folder,category,'9_triplane_kl25_64',model)
triplane_list=os.listdir(triplane_folder)
select_index=np.random.randint(0,len(triplane_list))
triplane_path=os.path.join(triplane_folder,triplane_list[select_index])
#triplane_path=os.path.join(triplane_folder,"triplane_feat_0.npz")
triplane_content=np.load(triplane_path)
triplane_mean,triplane_logvar,tran_mat=triplane_content['mean'],triplane_content['logvar'],triplane_content['tran_mat']
tran_mat=torch.from_numpy(tran_mat).float()
if self.transform:
if not self.load_triplane:
surface, points, par_points,proj_mat,tran_mat = self.transform(surface, points, par_points,proj_mat_list)
tran_mat=torch.from_numpy(tran_mat).float()
else:
surface, points, par_points, proj_mat = self.transform(surface, points, par_points, proj_mat_list,tran_mat)
category_id=category_ids[category]
one_hot=torch.zeros((6)).float()
one_hot[category_id]=1.0
ret_dict = {
"category_ids": category_ids[category],
"category":category,
"category_code":one_hot,
"model_id": model,
"partial_name": partial_name[:-4],
"class_name": category,
}
if tran_mat is not None:
ret_dict["tran_mat"]=tran_mat
if self.ret_sample:
ret_dict["points"]=points
ret_dict["labels"]=labels
if self.return_surface:
ret_dict["surface"] = surface
ret_dict["par_points"] = par_points
if self.load_img:
ret_dict["image"] = torch.stack(image_list,dim=0)
ret_dict["valid_frames"]= torch.tensor(valid_frames).bool()
if self.load_org_img:
ret_dict["org_image"]=org_img_list
ret_dict["image_namelist"]=image_namelist
if self.load_proj_mat:
ret_dict["proj_mat"]=torch.stack([torch.from_numpy(mat) for mat in proj_mat_list],dim=0)
if self.load_triplane:
ret_dict['triplane_mean']=torch.from_numpy(triplane_mean).float()
ret_dict['triplane_logvar'] = torch.from_numpy(triplane_logvar).float()
return ret_dict
def __len__(self):
if self.split != 'train':
return len(self.models)
else:
return int(len(self.models) * self.replica)