LASA / evaluation /evaluate_object_reconstruction.py
HaolinLiu's picture
first commit of codes and update readme.md
cc9780d
raw
history blame
11.3 kB
import argparse
import sys
sys.path.append("..")
sys.path.append(".")
import numpy as np
import mcubes
import os
import torch
import trimesh
from datasets.SingleView_dataset import Object_PartialPoints_MultiImg
from datasets.transforms import Scale_Shift_Rotate
from models import get_model
from pathlib import Path
import open3d as o3d
from configs.config_utils import CONFIG
import cv2
from util.misc import MetricLogger
import scipy
from pyTorchChamferDistance.chamfer_distance import ChamferDistance
from util.projection_utils import draw_proj_image
from util import misc
import time
dist_chamfer=ChamferDistance()
def pc_metrics(p1, p2, space_ext=2, fscore_param=0.01, scale=.5):
""" p2: reference ponits
(B, N, 3)
"""
p1, p2, space_ext = p1 * scale, p2 * scale, space_ext * scale
f_thresh = space_ext * fscore_param
#print(p1.shape,p2.shape)
d1, d2, _, _ = dist_chamfer(p1, p2)
#print(d1.shape,d2.shape)
d1sqrt, d2sqrt = (d1 ** .5), (d2 ** .5)
chamfer_L1 = d1sqrt.mean(axis=-1) + d2sqrt.mean(axis=-1)
chamfer_L2 = d1.mean(axis=-1) + d2.mean(axis=-1)
precision = (d1sqrt < f_thresh).sum(axis=-1).float() / p1.shape[1]
recall = (d2sqrt < f_thresh).sum(axis=-1).float() / p2.shape[1]
#print(precision,recall)
fscore = 2 * torch.div(recall * precision, recall + precision)
fscore[fscore == float("inf")] = 0
return chamfer_L1,chamfer_L2,fscore
if __name__ == "__main__":
parser = argparse.ArgumentParser('this script can be used to compute iou fscore chamfer distance before icp align', add_help=False)
parser.add_argument('--configs',type=str,required=True)
parser.add_argument('--output_folder', type=str, default="../output_result/Triplane_diff_parcond_0926")
parser.add_argument('--dm-pth',type=str)
parser.add_argument('--ae-pth',type=str)
parser.add_argument('--data-pth', type=str,default="../")
parser.add_argument('--save_mesh',action="store_true",default=False)
parser.add_argument('--save_image',action="store_true",default=False)
parser.add_argument('--save_par_points', action="store_true", default=False)
parser.add_argument('--save_proj_img',action="store_true",default=False)
parser.add_argument('--save_surface',action="store_true",default=False)
parser.add_argument('--reso',default=128,type=int)
parser.add_argument('--category',nargs="+",type=str)
parser.add_argument('--eval_cd',action="store_true",default=False)
parser.add_argument('--use_augmentation',action="store_true",default=False)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
args = parser.parse_args()
misc.init_distributed_mode(args)
config_path=args.configs
config=CONFIG(config_path)
dataset_config=config.config['dataset']
dataset_config['data_path']=args.data_pth
if "arkit" in args.category[0]:
split_filename=dataset_config['keyword']+'_val_par_img.json'
else:
split_filename='val_par_img.json'
transform = None
if args.use_augmentation:
transform=Scale_Shift_Rotate(jitter_partial=False,jitter=False,use_scale=False,angle=(-10,10),shift=(-0.1,0.1))
dataset_val = Object_PartialPoints_MultiImg(dataset_config['data_path'], split_filename=split_filename,categories=args.category,split="val",
transform=transform, sampling=False,
num_samples=1024, return_surface=True,ret_sample=True,
surface_sampling=True, par_pc_size=dataset_config['par_pc_size'],surface_size=100000,
load_proj_mat=True,load_image=True,load_org_img=True,load_triplane=None,par_point_aug=None,replica=1)
batch_size=1
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
val_sampler = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank,
shuffle=False) # shu
dataloader_val=torch.utils.data.DataLoader(
dataset_val,
sampler=val_sampler,
batch_size=batch_size,
num_workers=10,
shuffle=False,
)
output_folder=args.output_folder
device = torch.device('cuda')
ae_config=config.config['model']['ae']
dm_config=config.config['model']['dm']
ae_model=get_model(ae_config).to(device)
if args.category[0] == "all":
dm_config["use_cat_embedding"]=True
else:
dm_config["use_cat_embedding"] = False
dm_model=get_model(dm_config).to(device)
ae_model.eval()
dm_model.eval()
ae_model.load_state_dict(torch.load(args.ae_pth)['model'])
dm_model.load_state_dict(torch.load(args.dm_pth)['model'])
density = args.reso
gap = 2.2 / density
x = np.linspace(-1.1, 1.1, int(density + 1))
y = np.linspace(-1.1, 1.1, int(density + 1))
z = np.linspace(-1.1, 1.1, int(density + 1))
xv, yv, zv = np.meshgrid(x, y, z,indexing='ij')
grid = torch.from_numpy(np.stack([xv, yv, zv]).astype(np.float32)).view(3, -1).transpose(0, 1)[None].to(device,non_blocking=True)
metric_logger=MetricLogger(delimiter=" ")
header = 'Test:'
with torch.no_grad():
for data_batch in metric_logger.log_every(dataloader_val,10, header):
# if data_iter_step==100:
# break
partial_name = data_batch['partial_name']
class_name = data_batch['class_name']
model_ids=data_batch['model_id']
surface=data_batch['surface']
proj_matrices=data_batch['proj_mat']
sample_points=data_batch["points"].cuda().float()
labels=data_batch["labels"].cuda().float()
sample_input=dm_model.prepare_sample_data(data_batch)
#t1 = time.time()
sampled_array = dm_model.sample(sample_input,num_steps=36).float()
#t2 = time.time()
#sample_time = t2 - t1
#print("sampling time %f" % (sample_time))
sampled_array = torch.nn.functional.interpolate(sampled_array, scale_factor=2, mode="bilinear")
for j in range(sampled_array.shape[0]):
if args.save_mesh | args.save_par_points | args.save_image:
object_folder = os.path.join(output_folder, class_name[j], model_ids[j])
Path(object_folder).mkdir(parents=True, exist_ok=True)
'''calculate iou'''
sample_point=sample_points[j:j+1]
sample_output=ae_model.decode(sampled_array[j:j + 1],sample_point)
sample_pred=torch.zeros_like(sample_output)
sample_pred[sample_output>=0.0]=1
label=labels[j:j+1]
intersection = (sample_pred * label).sum(dim=1)
union = (sample_pred + label).gt(0).sum(dim=1)
iou = intersection * 1.0 / union + 1e-5
iou = iou.mean()
metric_logger.update(iou=iou.item())
if args.use_augmentation:
tran_mat=data_batch["tran_mat"][j].numpy()
mat_save_path='{}/tran_mat.npy'.format(object_folder)
np.save(mat_save_path,tran_mat)
if args.eval_cd:
grid_list=torch.split(grid,128**3,dim=1)
output_list=[]
#t3=time.time()
for sub_grid in grid_list:
output_list.append(ae_model.decode(sampled_array[j:j + 1],sub_grid))
output=torch.cat(output_list,dim=1)
#t4=time.time()
#decoding_time=t4-t3
#print("decoding time:",decoding_time)
logits = output[j].detach()
volume = logits.view(density + 1, density + 1, density + 1).cpu().numpy()
verts, faces = mcubes.marching_cubes(volume, 0)
verts *= gap
verts -= 1.1
#print("vertice max min",np.amin(verts,axis=0),np.amax(verts,axis=0))
m = trimesh.Trimesh(verts, faces)
'''calculate fscore and chamfer distance'''
result_surface,_=trimesh.sample.sample_surface(m,100000)
gt_surface=surface[j]
assert gt_surface.shape[0]==result_surface.shape[0]
result_surface_gpu = torch.from_numpy(result_surface).float().cuda().unsqueeze(0)
gt_surface_gpu = gt_surface.float().cuda().unsqueeze(0)
_,chamfer_L2,fscore=pc_metrics(result_surface_gpu,gt_surface_gpu)
metric_logger.update(chamferl2=chamfer_L2*1000.0)
metric_logger.update(fscore=fscore)
if args.save_mesh:
m.export('{}/{}_mesh.ply'.format(object_folder, partial_name[j]))
if args.save_par_points:
par_point_input = data_batch['par_points'][j].numpy()
#print("input max min", np.amin(par_point_input, axis=0), np.amax(par_point_input, axis=0))
par_point_o3d = o3d.geometry.PointCloud()
par_point_o3d.points = o3d.utility.Vector3dVector(par_point_input[:, 0:3])
o3d.io.write_point_cloud('{}/{}.ply'.format(object_folder, partial_name[j]), par_point_o3d)
if args.save_image:
image_list=data_batch["org_image"]
for idx,image in enumerate(image_list):
image=image[0].numpy().astype(np.uint8)
if args.save_proj_img:
proj_mat=proj_matrices[j,idx].numpy()
proj_image=draw_proj_image(image,proj_mat,result_surface)
proj_save_path = '{}/proj_{}.jpg'.format(object_folder, idx)
cv2.imwrite(proj_save_path,proj_image)
save_path='{}/{}.jpg'.format(object_folder, idx)
cv2.imwrite(save_path,image)
if args.save_surface:
surface=gt_surface.numpy().astype(np.float32)
surface_o3d = o3d.geometry.PointCloud()
surface_o3d.points = o3d.utility.Vector3dVector(surface[:, 0:3])
o3d.io.write_point_cloud('{}/surface.ply'.format(object_folder), surface_o3d)
metric_logger.synchronize_between_processes()
print('* iou {ious.global_avg:.3f}'
.format(ious=metric_logger.iou))
if args.eval_cd:
print('* chamferl2 {chamferl2s.global_avg:.3f}'
.format(chamferl2s=metric_logger.chamferl2))
print('* fscore {fscores.global_avg:.3f}'
.format(fscores=metric_logger.fscore))