LASA / process_scripts /augment_synthetic_partial_points.py
HaolinLiu's picture
first commit of codes and update readme.md
cc9780d
raw
history blame
1.98 kB
import numpy as np
import scipy
import os
import trimesh
from sklearn.cluster import KMeans
import random
import glob
import tqdm
import multiprocessing as mp
import sys
sys.path.append("..")
from datasets.taxonomy import synthetic_category_combined
import argparse
parser=argparse.ArgumentParser()
parser.add_argument("--category",nargs="+",type=str)
parser.add_argument("--root_dir",type=str,default="../data/other_data")
args=parser.parse_args()
categories=args.category
if categories[0]=="all":
categories=synthetic_category_combined["all"]
kmeans=KMeans(
init="random",
n_clusters=7,
n_init=10,
max_iter=300,
random_state=42
)
def process_data(src_filepath,save_path):
#print("processing %s"%(src_filepath))
src_point_tri = trimesh.load(src_filepath)
src_point = np.asarray(src_point_tri.vertices)
kmeans.fit(src_point)
point_cluster_index = kmeans.labels_
n_cluster = random.randint(3, 6)
choose_cluster = np.random.choice(7, n_cluster, replace=False)
aug_point_list = []
for cluster_index in choose_cluster:
cluster_point = src_point[point_cluster_index == cluster_index]
aug_point_list.append(cluster_point)
aug_point = np.concatenate(aug_point_list, axis=0)
aug_point_tri = trimesh.PointCloud(vertices=aug_point)
print("saving to %s"%(save_path))
aug_point_tri.export(save_path)
pool=mp.Pool(10)
for cat in categories:
print("processing %s"%cat)
point_dir=os.path.join(args.root_dir,cat,"5_partial_points")
folder_list=os.listdir(point_dir)
for folder in folder_list[:]:
folder_path=os.path.join(point_dir,folder)
src_filelist=glob.glob(folder_path+"/partial_points_*.ply")
for src_filepath in src_filelist:
basename=os.path.basename(src_filepath)
save_path = os.path.join(point_dir, folder, "aug7_" + basename)
pool.apply_async(process_data,(src_filepath,save_path))
pool.close()
pool.join()