LASA / scripts /train_triplane_diffusion.py
HaolinLiu's picture
first commit of codes and update readme.md
cc9780d
import argparse
import sys
sys.path.append("..")
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import util.misc as misc
from datasets import build_dataset
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from models import get_model,get_criterion
from engine.engine_triplane_dm import train_one_epoch,evaluate_reconstruction
def get_args_parser():
parser = argparse.ArgumentParser('Latent Diffusion', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--ae-pth',type=str)
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR', # 2e-4
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data-pth', default='../data', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output/',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output/',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=60, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--constant_lr', default=False, action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--load_proj_mat',default=True,type=bool)
parser.add_argument('--num_objects',type=int,default=-1)
parser.add_argument('--configs', type=str)
parser.add_argument('--finetune', default=False, action="store_true")
parser.add_argument('--finetune-pth', type=str)
parser.add_argument('--use_cls_free',action="store_true",default=False)
parser.add_argument('--sync_bn',action="store_true",default=False)
parser.add_argument('--category',type=str)
parser.add_argument('--stop',type=int,default=1000)
parser.add_argument('--replica', type=int, default=5)
return parser
def main(args,config):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_config = config.config['dataset']
dataset_config['category']=args.category
dataset_config['replica']=args.replica
dataset_config['num_objects']=args.num_objects
dataset_config['data_path']=args.data_pth
dataset_train = build_dataset('train', dataset_config)
print("training dataset len is %d"%(len(dataset_train)))
dataset_val=build_dataset('val', dataset_config)
#dataset_val = build_dataset('val', dataset_config)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank,
shuffle=True) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
if misc.get_rank()==0:
log_dir=args.log_dir
src_folder="/data1/haolin/TriplaneDiffusion"
misc.log_codefiles(src_folder,log_dir+"/code_bak")
#cmd="cp -r %s %s"%(src_folder,log_dir+"/code_bak")
#print(cmd)
#os.system(cmd)
config_dict=vars(args)
config_save_path=os.path.join(log_dir,"config.json")
with open(config_save_path,'w') as f:
json.dump(config_dict,f,indent=4)
model_dict=config
model_config_save_path=os.path.join(log_dir,"model.json")
config.write_config(model_config_save_path)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
prefetch_factor=2,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
# batch_size=args.batch_size,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
ae_args=config.config['model']['ae']
ae = get_model(ae_args)
ae.eval()
print("Loading autoencoder %s" % args.ae_pth)
ae.load_state_dict(torch.load(args.ae_pth, map_location='cpu')['model'])
ae.to(device)
dm_args=config.config['model']['dm']
if args.category[0] == "all":
dm_args["use_cat_embedding"]=True
else:
dm_args["use_cat_embedding"] = False
dm_model = get_model(dm_args)
if args.sync_bn:
dm_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(dm_model)
if args.finetune:
print("finetune the model, load from %s"%(args.finetune_pth))
dm_model.load_state_dict(torch.load(args.finetune_pth,map_location="cpu")['model'])
dm_model.to(device)
model_without_ddp = dm_model
n_parameters = sum(p.numel() for p in dm_model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
dm_model = torch.nn.parallel.DistributedDataParallel(dm_model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = dm_model.module
# # build optimizer with layer-wise lr decay (lrd)
# param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
# no_weight_decay_list=model_without_ddp.no_weight_decay(),
# layer_decay=args.layer_decay
# )
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr)
loss_scaler = NativeScaler()
cri_args=config.config['criterion']
criterion = get_criterion(cri_args)
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(data_loader_val, dm_model, device)
print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
min_loss = 1000.0
max_iou=0
stop_epochs=min(args.stop,args.epochs)
for epoch in range(args.start_epoch, stop_epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
#test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
train_stats = train_one_epoch(
dm_model, ae, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
log_writer=log_writer,
log_dir=args.log_dir,
args=args
)
if args.output_dir and (epoch % 5 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch,prefix="latest")
if epoch % 5 == 0 or epoch + 1 == args.epochs:
test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
print(f"iou of the network on the {len(dataset_val)} test images: {test_stats['iou']:.3f}")
# print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")
if test_stats["iou"] > max_iou:
max_iou = test_stats["iou"]
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, prefix='best')
else:
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, prefix='latest')
if log_writer is not None:
log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch)
log_writer.add_scalar('perf/test_iou', test_stats['iou'], epoch)
log_writer.add_scalar('perf/test_accuracy', test_stats['accuracy'], epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
config_path = args.configs
from configs.config_utils import CONFIG
config = CONFIG(config_path)
main(args,config)