|
import argparse |
|
import datetime |
|
import json |
|
import numpy as np |
|
import os,sys |
|
sys.path.append("..") |
|
|
|
import time |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
torch.set_num_threads(8) |
|
|
|
import util.misc as misc |
|
from datasets import build_dataset |
|
from util.misc import NativeScalerWithGradNormCount as NativeScaler |
|
from models import get_model |
|
|
|
from engine.engine_triplane_vae import train_one_epoch, evaluate |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser('Autoencoder', add_help=False) |
|
parser.add_argument('--batch_size', default=64, type=int, |
|
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') |
|
parser.add_argument('--epochs', default=800, type=int) |
|
parser.add_argument('--accum_iter', default=1, type=int, |
|
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') |
|
|
|
|
|
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', |
|
help='Clip gradient norm (default: None, no clipping)') |
|
parser.add_argument('--weight_decay', type=float, default=0.05, |
|
help='weight decay (default: 0.05)') |
|
|
|
parser.add_argument('--lr', type=float, default=None, metavar='LR', |
|
help='learning rate (absolute lr)') |
|
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR', |
|
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') |
|
parser.add_argument('--layer_decay', type=float, default=0.75, |
|
help='layer-wise lr decay from ELECTRA/BEiT') |
|
|
|
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', |
|
help='lower lr bound for cyclic schedulers that hit 0') |
|
|
|
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', |
|
help='epochs to warmup LR') |
|
|
|
parser.add_argument('--output_dir', default='./output/', |
|
help='path where to save, empty for no saving') |
|
parser.add_argument('--log_dir', default='./output/', |
|
help='path where to tensorboard log') |
|
parser.add_argument('--device', default='cuda', |
|
help='device to use for training / testing') |
|
parser.add_argument('--seed', default=0, type=int) |
|
parser.add_argument('--resume', default='', |
|
help='resume from checkpoint') |
|
parser.add_argument('--data-pth',default="../data",type=str) |
|
|
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', |
|
help='start epoch') |
|
parser.add_argument('--eval', action='store_true', |
|
help='Perform evaluation only') |
|
parser.add_argument('--dist_eval', action='store_true', default=False, |
|
help='Enabling distributed evaluation (recommended during training for faster monitor') |
|
parser.add_argument('--num_workers', default=60, type=int) |
|
parser.add_argument('--pin_mem', action='store_true', |
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') |
|
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') |
|
parser.set_defaults(pin_mem=False) |
|
|
|
|
|
parser.add_argument('--world_size', default=1, type=int, |
|
help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_on_itp', action='store_true') |
|
parser.add_argument('--dist_url', default='env://', |
|
help='url used to set up distributed training') |
|
|
|
parser.add_argument('--configs',type=str) |
|
parser.add_argument('--finetune', default=False, action="store_true") |
|
parser.add_argument('--finetune-pth', type=str) |
|
parser.add_argument('--category',type=str) |
|
parser.add_argument('--replica',type=int,default=8) |
|
|
|
return parser |
|
|
|
|
|
def main(args,config): |
|
misc.init_distributed_mode(args) |
|
|
|
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) |
|
print("{}".format(args).replace(', ', ',\n')) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
cudnn.benchmark = True |
|
|
|
dataset_config=config.config['dataset'] |
|
dataset_config['category']=args.category |
|
dataset_config['replica']=args.replica |
|
dataset_config['data_path']=args.data_pth |
|
dataset_train = build_dataset('train',dataset_config) |
|
dataset_val = build_dataset('val', dataset_config) |
|
|
|
if True: |
|
num_tasks = misc.get_world_size() |
|
global_rank = misc.get_rank() |
|
sampler_train = torch.utils.data.DistributedSampler( |
|
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
) |
|
print("Sampler_train = %s" % str(sampler_train)) |
|
if args.dist_eval: |
|
if len(dataset_val) % num_tasks != 0: |
|
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' |
|
'This will slightly alter validation results as extra duplicate entries are added to achieve ' |
|
'equal num of samples per-process.') |
|
sampler_val = torch.utils.data.DistributedSampler( |
|
dataset_val, num_replicas=num_tasks, rank=global_rank, |
|
shuffle=True) |
|
else: |
|
sampler_val = torch.utils.data.SequentialSampler(dataset_val) |
|
else: |
|
sampler_train = torch.utils.data.RandomSampler(dataset_train) |
|
sampler_val = torch.utils.data.SequentialSampler(dataset_val) |
|
|
|
if global_rank == 0 and args.log_dir is not None and not args.eval: |
|
os.makedirs(args.log_dir, exist_ok=True) |
|
log_writer = SummaryWriter(log_dir=args.log_dir) |
|
else: |
|
log_writer = None |
|
|
|
if misc.get_rank() == 0: |
|
log_dir = args.log_dir |
|
src_folder = "/data1/haolin/TriplaneDiffusion" |
|
misc.log_codefiles(src_folder, log_dir + "/code_bak") |
|
config_dict = vars(args) |
|
config_save_path = os.path.join(log_dir, "config.json") |
|
with open(config_save_path, 'w') as f: |
|
json.dump(config_dict, f, indent=4) |
|
model_config_path=os.path.join(log_dir,"setup.yaml") |
|
config.write_config(model_config_path) |
|
|
|
print("dataset len", dataset_train.__len__()) |
|
data_loader_train = torch.utils.data.DataLoader( |
|
dataset_train, sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=args.pin_mem, |
|
drop_last=True, |
|
prefetch_factor=2, |
|
) |
|
print("dataset len", dataset_train.__len__(), "dataloader len", len(data_loader_train)) |
|
|
|
data_loader_val = torch.utils.data.DataLoader( |
|
dataset_val, sampler=sampler_val, |
|
|
|
batch_size=1, |
|
|
|
num_workers=1, |
|
pin_memory=args.pin_mem, |
|
drop_last=False |
|
) |
|
|
|
|
|
model_config=config.config['model'] |
|
model = get_model(model_config) |
|
if args.finetune: |
|
print("finetune the model, load from %s"%(args.finetune_pth)) |
|
model.load_state_dict(torch.load(args.finetune_pth)['model']) |
|
model.to(device) |
|
|
|
model_without_ddp = model |
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
print("Model = %s" % str(model_without_ddp)) |
|
print('number of params (M): %.2f' % (n_parameters / 1.e6)) |
|
|
|
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() |
|
|
|
if args.lr is None: |
|
args.lr = args.blr * eff_batch_size / 256 |
|
|
|
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) |
|
print("actual lr: %.2e" % args.lr) |
|
|
|
print("accumulate grad iterations: %d" % args.accum_iter) |
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False) |
|
model_without_ddp = model.module |
|
|
|
|
|
|
|
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr) |
|
loss_scaler = NativeScaler() |
|
|
|
criterion = torch.nn.BCEWithLogitsLoss() |
|
|
|
print("criterion = %s" % str(criterion)) |
|
|
|
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) |
|
|
|
if args.eval: |
|
test_stats = evaluate(data_loader_val, model, device) |
|
print(f"iou of the network on the {len(dataset_val)} test images: {test_stats['iou']:.3f}") |
|
exit(0) |
|
|
|
print(f"Start training for {args.epochs} epochs") |
|
start_time = time.time() |
|
max_iou = 0.0 |
|
for epoch in range(args.start_epoch, args.epochs): |
|
|
|
|
|
|
|
train_stats = train_one_epoch( |
|
model, criterion, data_loader_train, |
|
optimizer, device, epoch, loss_scaler, |
|
args.clip_grad, |
|
log_writer=log_writer, |
|
args=args |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if epoch % 5 == 0 or epoch + 1 == args.epochs: |
|
test_stats = evaluate(data_loader_val, model, device) |
|
print(f"iou of the network on the {len(dataset_val)} test images: {test_stats['iou']:.3f}") |
|
if test_stats["iou"] > max_iou: |
|
max_iou = test_stats["iou"] |
|
misc.save_model( |
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch, prefix='best') |
|
else: |
|
misc.save_model( |
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch, prefix='latest') |
|
|
|
print(f'Max iou: {max_iou:.2f}%') |
|
|
|
if log_writer is not None: |
|
log_writer.add_scalar('perf/test_iou', test_stats['iou'], epoch) |
|
log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) |
|
|
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
**{f'test_{k}': v for k, v in test_stats.items()}, |
|
'epoch': epoch, |
|
'n_parameters': n_parameters} |
|
else: |
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch, |
|
'n_parameters': n_parameters} |
|
|
|
if args.output_dir and misc.is_main_process(): |
|
if log_writer is not None: |
|
log_writer.flush() |
|
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
if args.output_dir: |
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
config_path=args.configs |
|
from configs.config_utils import CONFIG |
|
config=CONFIG(config_path) |
|
main(args,config) |