File size: 2,808 Bytes
e36951d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from google.cloud import dialogflow
import kaleido
import cohere
import openai
import tiktoken
import tensorflow_probability as tfp
# Define model paths
dialogflow_agent_path = "path/to/dialogflow_agent.json"
journaling_model_path = "path/to/journaling_model.pt"
llm_model_name = "gpt-j-6B"
# Load models
dialogflow_agent = dialogflow.Agent.from_json(dialogflow_agent_path)
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
llm_model = AutoModelForCausalLM.from_pretrained(llm_model_name)
# Define emotion and topic choices
emotions = ["Grateful", "Happy", "Sad", "Angry", "Anxious"]
topics = ["Relationships", "Work", "Personal Growth", "Overall Wellbeing"]
# Define breathing exercises
breathing_exercises = {
"4-7-8 Breathing": [4, 7, 8],
"Box Breathing": [4, 4, 4, 4],
}
# Function to generate text with LLM
def generate_text(prompt, num_beams=5):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output_ids = llm_model.generate(input_ids, num_beams=num_beams)
return tokenizer.decode(output_ids[0])
# Define individual page functions
def welcome_page():
user_input = st.text_input("Talk to the Therapist", placeholder="Start your conversation")
if user_input:
response = dialogflow_agent.text_query(user_input)
st.write(f"{welcome_message}\n\n{note}\n\n{response.query_result.fulfillment_text}")
def journaling_page():
emotion = st.radio("Choose your emotion", options=emotions)
topic = st.radio("Choose your topic", options=topics)
if emotion and topic:
prompt = f"Write about a time when you felt {emotion} about {topic}."
generated_text = generate_text(prompt)
st.write("Here are some personalized journaling prompts for you:")
for line in generated_text.split('\n'):
st.write(f"- {line}")
def breathing_page():
exercise_name = st.radio("Choose your breathing exercise", options=list(breathing_exercises.keys()))
if exercise_name:
exercise = breathing_exercises[exercise_name]
st.write(f"You selected the {exercise_name} exercise.")
for duration in exercise:
st.write(f"{duration} seconds...")
time.sleep(duration)
st.write("Breathing exercise complete!")
# Streamlit app layout
st.title("Flow: Self-Healing, Wellness, and Goal-Setting")
st.write("Welcome to your journey towards self-healing, wellness, and goal achievement.")
page_selection = st.sidebar.selectbox("Choose your page", options=["Welcome", "Journaling", "Breathing Exercises"])
if page_selection == "Welcome":
welcome_page()
elif page_selection == "Journaling":
journaling_page()
elif page_selection == "Breathing Exercises":
breathing_page()
|