File size: 1,651 Bytes
08185a7 fed8ca1 08185a7 e36951d 08185a7 8213314 e36951d 08185a7 e36951d 8213314 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 e36951d 08185a7 cbe022a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# app.py
!pip install transformers
import streamlit as st
from transformers import pipeline
# Function to load Hugging Face models
def load_model():
return pipeline("conversational", model="alpindale/goliath-120b")
# Page 1: Welcome and Chatbot
def page_welcome():
st.title("Welcome to Your Virtual Therapist")
st.write("Feel free to chat with our virtual therapist!")
# Load the provided Hugging Face chatbot model
chatbot_model = load_model()
user_input = st.text_input("You: ")
if user_input:
response = chatbot_model(user_input, max_length=50, num_return_sequences=1)[0]['generated_text']
st.text_area("Therapist:", response, height=100)
# Page 2: Journaling
def page_journaling():
st.title("Journaling Session")
st.write("Answer the following questions based on your preferences:")
# Add your journaling questions here
journaling_question = st.text_area("Question:", "How was your day?")
# Process the user's response as needed
# Page 3: Breathing Exercises
def page_breathing_exercises():
st.title("Breathing Exercises")
st.write("Start your meditation with the breathing exercise timer:")
# Add a timer or interactive element for breathing exercises
# Main App
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Welcome & Chatbot", "Journaling", "Breathing Exercises"])
if selection == "Welcome & Chatbot":
page_welcome()
elif selection == "Journaling":
page_journaling()
elif selection == "Breathing Exercises":
page_breathing_exercises()
if __name__ == "__main__":
main()
|