# app.py !pip install transformers import streamlit as st from transformers import pipeline # Function to load Hugging Face models def load_model(): return pipeline("conversational", model="alpindale/goliath-120b") # Page 1: Welcome and Chatbot def page_welcome(): st.title("Welcome to Your Virtual Therapist") st.write("Feel free to chat with our virtual therapist!") # Load the provided Hugging Face chatbot model chatbot_model = load_model() user_input = st.text_input("You: ") if user_input: response = chatbot_model(user_input, max_length=50, num_return_sequences=1)[0]['generated_text'] st.text_area("Therapist:", response, height=100) # Page 2: Journaling def page_journaling(): st.title("Journaling Session") st.write("Answer the following questions based on your preferences:") # Add your journaling questions here journaling_question = st.text_area("Question:", "How was your day?") # Process the user's response as needed # Page 3: Breathing Exercises def page_breathing_exercises(): st.title("Breathing Exercises") st.write("Start your meditation with the breathing exercise timer:") # Add a timer or interactive element for breathing exercises # Main App def main(): st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", ["Welcome & Chatbot", "Journaling", "Breathing Exercises"]) if selection == "Welcome & Chatbot": page_welcome() elif selection == "Journaling": page_journaling() elif selection == "Breathing Exercises": page_breathing_exercises() if __name__ == "__main__": main()