Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,61 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
text_generator = pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B", device=0) # You can choose a different model if needed
|
6 |
|
7 |
-
# Generate text
|
8 |
-
prompt = "Once upon a time"
|
9 |
-
generated_text = text_generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
10 |
|
11 |
-
# Print the generated text
|
12 |
-
print(generated_text)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
3 |
+
from huggingface_hub import cached_download
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Pre-trained models
|
8 |
+
text_generator = pipeline("text-generation", model="gpt2")
|
9 |
+
question_answering = pipeline("question-answering", model="distilbert-base-cased-squad2")
|
10 |
+
image_generator = pipeline("image-generation", model="sd-v1-diffusion")
|
11 |
+
|
12 |
+
# Download models if not already present
|
13 |
+
models = ["gpt2", "distilbert-base-cased-squad2", "sd-v1-diffusion"]
|
14 |
+
for model in models:
|
15 |
+
cached_download(repo_id=f"huggingface/transformers/{model}", force_download=True)
|
16 |
+
|
17 |
+
# Story prompt input
|
18 |
+
prompt = st.text_input("Start your story with...", value="Once upon a time...")
|
19 |
+
|
20 |
+
# Generate story
|
21 |
+
generated_text = text_generator(prompt, max_length=1024)[0]["generated_text"]
|
22 |
+
|
23 |
+
# Text-to-speech and Text-to-text buttons
|
24 |
+
st.button("Speak the story", on_click=lambda: speak(generated_text))
|
25 |
+
generated_text_2 = st.button("Generate different story", on_click=lambda: generate_text(prompt))
|
26 |
+
|
27 |
+
# Generate question from story
|
28 |
+
question = st.text_input("Ask a question about the story...")
|
29 |
+
answer = question_answering(question=question, context=generated_text)["answer"]
|
30 |
+
|
31 |
+
# Generate image
|
32 |
+
image = image_generator(prompt="Image related to the story:")
|
33 |
+
image = Image.open(torch.ByteStorage.from_buffer(image[0]["image"]).read())
|
34 |
+
|
35 |
+
# Streamlit layout
|
36 |
+
st.title("Your Story")
|
37 |
+
st.write(generated_text)
|
38 |
+
st.image(image)
|
39 |
+
|
40 |
+
# Question and answer section
|
41 |
+
st.subheader("Ask and Learn")
|
42 |
+
st.write(f"Question: {question}")
|
43 |
+
st.write(f"Answer: {answer}")
|
44 |
+
|
45 |
+
# Text-to-text functionality
|
46 |
+
if generated_text_2:
|
47 |
+
generated_text_2 = text_generator(prompt, max_length=1024)[0]["generated_text"]
|
48 |
+
st.write("**New Story:**")
|
49 |
+
st.write(generated_text_2)
|
50 |
+
|
51 |
+
# Text-to-speech functionality
|
52 |
+
def speak(text):
|
53 |
+
# Your preferred text-to-speech implementation
|
54 |
+
# (e.g., ResponsiveVoice, gTTS) goes here
|
55 |
+
pass
|
56 |
+
|
57 |
+
st.write("* This app is still under development and may not always generate accurate or coherent results.")
|
58 |
+
st.write("* Please be mindful of the content generated by the AI models.")
|
59 |
|
|
|
60 |
|
|
|
|
|
|
|
61 |
|
|
|
|