GH111 commited on
Commit
128c600
·
1 Parent(s): 9a376c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -21
app.py CHANGED
@@ -1,17 +1,13 @@
1
  # Import libraries
2
-
3
  import gradio as gr
4
- from transformers import pipeline
5
  from gtts import gTTS
6
  from io import BytesIO
7
  from PIL import Image
8
- from diffusers import DiffusionPipeline
9
-
10
- # Use a pipeline as a high-level helper for text generation
11
- vision_alpha_pipe = pipeline("text-generation", model="NousResearch/Nous-Hermes-2-Vision-Alpha")
12
 
13
- # Initialize DiffusionPipeline for text-to-image
14
- image_generation_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt")
 
15
 
16
  # Set the context for the storyteller
17
  messages = [{"role": "system", "content": "You are a magical storyteller, creating wonderful tales for kids. Make them imaginative and full of joy!"}]
@@ -20,39 +16,45 @@ messages = [{"role": "system", "content": "You are a magical storyteller, creati
20
  current_page = 0
21
 
22
  # Define the Storyteller function
23
- def StorytellerNous(character, child_name, lesson_choice, tell_story, _):
24
  global current_page
25
-
26
  # Set the characters and lesson based on user choices
27
  character_info = f"Once upon a time, {child_name} met {character}. "
28
  lesson_info = f"Today's lesson is about {lesson_choice}. "
29
-
30
  messages.append({"role": "user", "content": tell_story})
31
-
32
- # Generate story using Nous-Hermes-2-Vision-Alpha
33
  input_text = character_info + lesson_info + tell_story
34
- story_reply = vision_alpha_pipe(input_text, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95)[0]['generated_text']
 
 
 
 
35
 
36
  messages.append({"role": "assistant", "content": story_reply})
37
-
38
  # Convert text to speech
39
  tts = gTTS(text=story_reply, lang='en', slow=False)
40
  audio_io = BytesIO()
41
  tts.save(audio_io)
42
  audio_io.seek(0)
43
 
44
- # Convert text to image using DiffusionPipeline
45
- image_reply = image_generation_pipe(story_reply)
46
-
 
 
47
  # Display the story on separate pages
48
  story_pages = story_reply.split("\n\n") # Split the story into pages
49
  current_page = min(current_page, len(story_pages) - 1) # Ensure the current_page is within bounds
50
-
51
- return story_pages[current_page], Audio(data=audio_io.read(), autoplay=True), image_reply
52
 
53
  # Create the Gradio Interface with styling
54
  demo = gr.Interface(
55
- fn=StorytellerNous,
56
  inputs=[
57
  gr.Textbox("text", label="Child's Name"),
58
  gr.Dropdown(["unicorn", "dragon", "wizard"], label="Choose a Character"),
 
1
  # Import libraries
 
2
  import gradio as gr
3
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
4
  from gtts import gTTS
5
  from io import BytesIO
6
  from PIL import Image
 
 
 
 
7
 
8
+ # Load GPT-2 model and tokenizer
9
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
10
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
11
 
12
  # Set the context for the storyteller
13
  messages = [{"role": "system", "content": "You are a magical storyteller, creating wonderful tales for kids. Make them imaginative and full of joy!"}]
 
16
  current_page = 0
17
 
18
  # Define the Storyteller function
19
+ def StorytellerGPT(character, child_name, lesson_choice, tell_story, _):
20
  global current_page
21
+
22
  # Set the characters and lesson based on user choices
23
  character_info = f"Once upon a time, {child_name} met {character}. "
24
  lesson_info = f"Today's lesson is about {lesson_choice}. "
25
+
26
  messages.append({"role": "user", "content": tell_story})
27
+
28
+ # Generate story using Hugging Face's GPT-2
29
  input_text = character_info + lesson_info + tell_story
30
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
31
+ story_reply = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95)[0]
32
+
33
+ # Decode the generated sequence
34
+ story_reply = tokenizer.decode(story_reply, skip_special_tokens=True)
35
 
36
  messages.append({"role": "assistant", "content": story_reply})
37
+
38
  # Convert text to speech
39
  tts = gTTS(text=story_reply, lang='en', slow=False)
40
  audio_io = BytesIO()
41
  tts.save(audio_io)
42
  audio_io.seek(0)
43
 
44
+ # Convert text to image
45
+ image = Image.new("RGB", (300, 300), (255, 255, 255))
46
+ image_path = "/path/to/output/image.png"
47
+ image.save(image_path)
48
+
49
  # Display the story on separate pages
50
  story_pages = story_reply.split("\n\n") # Split the story into pages
51
  current_page = min(current_page, len(story_pages) - 1) # Ensure the current_page is within bounds
52
+
53
+ return story_pages[current_page], Audio(data=audio_io.read(), autoplay=True), image
54
 
55
  # Create the Gradio Interface with styling
56
  demo = gr.Interface(
57
+ fn=StorytellerGPT,
58
  inputs=[
59
  gr.Textbox("text", label="Child's Name"),
60
  gr.Dropdown(["unicorn", "dragon", "wizard"], label="Choose a Character"),