Spaces:
Running
Running
File size: 4,758 Bytes
d2ca64e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# import gradio as gr
# from groq import Groq
# client = Groq(
# api_key=("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"),
# )
# def generate_response(input_text):
# chat_completion = client.chat.completions.create(
# messages=[
# {
# "role": "user",
# "content": input_text,
# }
# ],
# model="llama3-8b-8192",
# )
# return chat_completion.choices[0].message.content
# custom_css = """
# body {
# background-color: #f5f5f5;
# font-family: 'Arial', sans-serif;
# color: #333;
# }
# .gradio-container {
# border-radius: 12px;
# padding: 20px;
# background-color: #ffffff;
# box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
# }
# input[type="text"], textarea {
# border-radius: 10px;
# border: 1px solid #ddd;
# padding: 12px;
# width: 100%;
# font-size: 14px;
# color: #333;
# background-color: #f9f9f9;
# }
# button {
# background-color: #007bff;
# color: white;
# border: none;
# padding: 12px 24px;
# border-radius: 10px;
# cursor: pointer;
# font-size: 14px;
# font-weight: bold;
# }
# button:hover {
# background-color: #0056b3;
# }
# h1 {
# font-weight: 600;
# color: #333;
# }
# textarea {
# resize: none;
# }
# """
# iface = gr.Interface(
# fn=generate_response,
# inputs=gr.Textbox(label="ورودی" , lines=2, placeholder="اینجا یه چی بپرس... "),
# outputs=gr.Textbox(label="جواب"),
# title="💬 Parviz Chatbot",
# description="زنده باد",
# theme="dark",
# allow_flagging="never"
# )
# iface.launch()
# import gradio as gr
# from groq import Groq
# import time
# client = Groq(api_key="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")
# def generate_response(message, chat_history):
# chat_completion = client.chat.completions.create(
# messages=[{"role": "user", "content": message}],
# model="llama3-8b-8192",
# )
# bot_message = chat_completion.choices[0].message.content
# for i in range(0, len(bot_message), 10):
# yield chat_history + [(message, bot_message[:i + 10])]
# time.sleep(0.1)
# yield chat_history + [(message, bot_message)]
# with gr.Blocks() as demo:
# gr.Markdown("<h1 style='text-align: center;'>💬 Parviz Chatbot</h1><p style='text-align: center; color: #e0e0e0;'>زنده باد</p>")
# chatbot = gr.Chatbot(label="جواب")
# msg = gr.Textbox(label="ورودی", placeholder="اینجا یه چی بپرس... ", lines=1)
# msg.submit(generate_response, [msg, chatbot], chatbot)
# clear = gr.ClearButton([msg, chatbot])
# demo.launch()
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig
import re
import time
tokenizer = AutoTokenizer.from_pretrained("universitytehran/PersianMind-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("universitytehran/PersianMind-v1.0")
def generate_response(message, chat_history):
TEMPLATE = "{context}\nYou: {prompt}\nParvizGPT "
CONTEXT = "This is a conversation with ParvizGPT. It is an artificial intelligence model designed by Amir Mahdi Parviz " \
"NLP expert to help you with various tasks such as answering questions, " \
"providing recommendations, and helping with decision making. You can ask it anything you want and " \
"it will do its best to give you accurate and relevant information."
prompt = TEMPLATE.format(context=CONTEXT, prompt=message)
generation_config = GenerationConfig(
max_new_tokens=128,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.8,
repetition_penalty=1.2
)
tokenized_test_text = tokenizer(prompt, return_tensors='pt').input_ids.to("cpu")
model.to("cpu")
outputs = model.generate(tokenized_test_text, generation_config=generation_config, max_new_tokens=128)
result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
for i in range(0, len(result), 10):
yield chat_history + [(message, result[:i + 10])]
time.sleep(0.1)
yield chat_history + [(message, result)]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>💬 Parviz GPT</h1><p style='text-align: center;'>made by A.M.Parviz \</p>")
chatbot = gr.Chatbot(label="جواب")
msg = gr.Textbox(label="ورودی", placeholder="سوال خودتو رو بپرس", lines=1)
msg.submit(generate_response, [msg, chatbot], chatbot)
clear = gr.ClearButton([msg, chatbot])
demo.launch()
|