Spaces:
Sleeping
Sleeping
import time | |
import logging | |
import gradio as gr | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain_core.vectorstores import InMemoryVectorStore | |
from groq import Groq | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
client = Groq(api_key="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") | |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings") | |
vector_store = InMemoryVectorStore(embeddings) | |
def process_pdf_with_langchain(pdf_path): | |
try: | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
split_documents = text_splitter.split_documents(documents) | |
vectorstore = FAISS.from_documents(split_documents, embedding_model) | |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
return retriever | |
except Exception as e: | |
logger.error(f"Error processing PDF: {e}") | |
raise | |
def generate_response(query, retriever=None): | |
try: | |
knowledge = "" | |
if retriever: | |
relevant_docs = retriever.get_relevant_documents(query) | |
knowledge += "\n".join([doc.page_content for doc in relevant_docs]) | |
chat_history = memory.load_memory_variables({}).get("chat_history", "") | |
context = "This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from KUT." | |
if knowledge: | |
context += f"\n\nRelevant Knowledge:\n{knowledge}" | |
if chat_history: | |
context += f"\n\nChat History:\n{chat_history}" | |
context += f"\n\nYou: {query}\nParvizGPT:" | |
# ابتدا یک پیام موقت نمایش داده شود | |
response = "در حال پردازش..." | |
retries = 3 | |
for attempt in range(retries): | |
try: | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": context}], | |
model="deepseek-r1-distill-llama-70b" | |
) | |
response = chat_completion.choices[0].message.content.strip() | |
memory.save_context({"input": query}, {"output": response}) | |
break | |
except Exception as e: | |
logger.error(f"Attempt {attempt + 1} failed: {e}") | |
time.sleep(2) | |
return response | |
except Exception as e: | |
logger.error(f"Error generating response: {e}") | |
return f"Error: {e}" | |
def gradio_interface(user_message, chat_box, pdf_file=None): | |
global retriever | |
if pdf_file is not None: | |
try: | |
retriever = process_pdf_with_langchain(pdf_file.name) | |
except Exception as e: | |
return chat_box + [("Error", f"Error processing PDF: {e}")] | |
chat_box.append(("ParvizGPT", "در حال پردازش...")) | |
response = generate_response(user_message, retriever=retriever) | |
chat_box[-1] = ("ParvizGPT", response) | |
chat_box.append(("You", user_message)) | |
return chat_box | |
def clear_memory(): | |
memory.clear() | |
return [] | |
retriever = None | |
with gr.Blocks() as interface: | |
gr.Markdown("## ParvizGPT") | |
chat_box = gr.Chatbot(label="Chat History", value=[]) | |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True) | |
clear_memory_btn = gr.Button("Clear Memory", interactive=True) | |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1) | |
submit_btn = gr.Button("Submit") | |
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box) | |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box) | |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) | |
interface.launch() | |