Parviz_Mind / app.py
GIGAParviz's picture
Update app.py
74ccf60 verified
raw
history blame
6.34 kB
import time
import logging
import gradio as gr
import os
from datetime import datetime
from datasets import Dataset, load_dataset
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from groq import Groq
from langchain.memory import ConversationBufferMemory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
groq_api_key = os.environ.get("GROQ_API_KEY")
hf_api_key = os.environ.get("HF_API_KEY")
if not groq_api_key:
raise ValueError("Groq API key not found in environment variables.")
if not hf_api_key:
raise ValueError("Hugging Face API key not found in environment variables.")
client = Groq(api_key=groq_api_key)
hf_token = hf_api_key
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
DATASET_NAME = "chat_history"
try:
dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
except Exception:
dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})
def save_chat_to_dataset(user_message, bot_message):
"""Save chat history to Hugging Face Dataset."""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
df = dataset.to_pandas()
df = df.append(new_row, ignore_index=True)
updated_dataset = Dataset.from_pandas(df)
updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
except Exception as e:
logger.error(f"Error saving chat history to dataset: {e}")
def process_pdf_with_langchain(pdf_path):
"""Process a PDF file and create a FAISS retriever."""
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, memory, retriever=None, use_pdf_context=False):
"""Generate a response using the Groq model and retrieved PDF context."""
try:
knowledge = ""
if retriever and use_pdf_context:
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = f"""
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT).
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
Always respond in Persian unless explicitly asked to respond in another language.
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response, memory
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}", memory
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
"""Handle the Gradio interface interactions."""
global retriever
if pdf_file is not None and use_pdf_context:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
chat_box[-1] = ("You", user_message)
chat_box.append(("ParvizGPT", response))
save_chat_to_dataset(user_message, response)
return chat_box, memory
def clear_memory(memory):
"""Clear the conversation memory."""
memory.clear()
return [], memory
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
memory_state = gr.State(ConversationBufferMemory())
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
user_message.submit(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
clear_memory_btn.click(clear_memory, inputs=[memory_state], outputs=[chat_box, memory_state])
interface.launch()