Parviz_Mind / app.py
GIGAParviz's picture
Update app.py
86ec5e1 verified
raw
history blame
1.62 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/t5-fa-small", use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
"HooshvareLab/t5-fa-small",
torch_dtype=torch.bfloat16
).to("cpu")
CONTEXT = (
"This is a conversation with ParvizGPT. It is an artificial intelligence model designed by Amir Mahdi Parviz, "
"an NLP expert, to help you with various tasks such as answering questions, "
"providing recommendations, and assisting with decision-making. Ask it anything!"
)
pretokenized_context = tokenizer(CONTEXT, return_tensors="pt").input_ids.to("cpu")
def generate_response(message, chat_history):
prompt = torch.cat(
[pretokenized_context, tokenizer("\nYou: " + message + "\nParvizGPT: ", return_tensors="pt").input_ids.to("cpu")],
dim=1
)
with torch.no_grad():
outputs = model.generate(
prompt,
max_new_tokens=32,
temperature=0.6,
top_k=20,
top_p=0.8,
do_sample=True
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = result.split("ParvizGPT:")[-1].strip()
return chat_history + [(message, response)]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>💬 Parviz GPT</h1>")
chatbot = gr.Chatbot(label="Response")
msg = gr.Textbox(label="Input", placeholder="Ask your question...", lines=1)
msg.submit(generate_response, [msg, chatbot], chatbot)
gr.ClearButton([msg, chatbot])
demo.launch()