Parviz_Mind / app.py
GIGAParviz's picture
Update app.py
720745c verified
raw
history blame
3.57 kB
# import gradio as gr
# from groq import Groq
# client = Groq(
# api_key=("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"),
# )
# def generate_response(input_text):
# chat_completion = client.chat.completions.create(
# messages=[
# {
# "role": "user",
# "content": input_text,
# }
# ],
# model="llama3-8b-8192",
# )
# return chat_completion.choices[0].message.content
# iface = gr.Interface(
# fn=generate_response,
# inputs=gr.Textbox(label="ورودی" , lines=2, placeholder="اینجا یه چی بپرس... "),
# outputs=gr.Textbox(label="جواب"),
# title="💬 Parviz GPT",
# description="زنده باد",
# theme="dark",
# allow_flagging="never"
# )
# iface.launch()
import gradio as gr
from groq import Groq
import time
client = Groq(api_key="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")
def generate_response(message, chat_history):
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": message}],
model="llama3-8b-8192",
)
bot_message = chat_completion.choices[0].message.content
for i in range(0, len(bot_message), 10):
yield chat_history + [(message, bot_message[:i + 10])]
time.sleep(0.1)
yield chat_history + [(message, bot_message)]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>💬 Parviz GPT</h1><p style='text-align: center; color: #e0e0e0;'>زنده باد</p>")
chatbot = gr.Chatbot(label="جواب")
msg = gr.Textbox(label="ورودی", placeholder="اینجا یه چی بپرس... ", lines=1)
msg.submit(generate_response, [msg, chatbot], chatbot)
clear = gr.ClearButton([msg, chatbot])
demo.launch()
# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("universitytehran/PersianMind-v1.0", use_fast=True)
# model = AutoModelForCausalLM.from_pretrained(
# "universitytehran/PersianMind-v1.0",
# torch_dtype=torch.bfloat16
# ).to("cpu")
# CONTEXT = (
# "This is a conversation with ParvizGPT. It is an artificial intelligence model designed by Amir Mahdi Parviz, "
# "an NLP expert, to help you with various tasks such as answering questions, "
# "providing recommendations, and assisting with decision-making. Ask it anything!"
# )
# pretokenized_context = tokenizer(CONTEXT, return_tensors="pt").input_ids.to("cpu")
# def generate_response(message, chat_history):
# prompt = torch.cat(
# [pretokenized_context, tokenizer("\nYou: " + message + "\nParvizGPT: ", return_tensors="pt").input_ids.to("cpu")],
# dim=1
# )
# with torch.no_grad():
# outputs = model.generate(
# prompt,
# max_new_tokens=32,
# temperature=0.6,
# top_k=20,
# top_p=0.8,
# do_sample=True
# )
# result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# response = result.split("ParvizGPT:")[-1].strip()
# return chat_history + [(message, response)]
# with gr.Blocks() as demo:
# gr.Markdown("<h1 style='text-align: center;'>💬 Parviz GPT</h1>")
# chatbot = gr.Chatbot(label="Response")
# msg = gr.Textbox(label="Input", placeholder="Ask your question...", lines=1)
# msg.submit(generate_response, [msg, chatbot], chatbot)
# gr.ClearButton([msg, chatbot])
# demo.launch()