Spaces:
Sleeping
Sleeping
import time | |
import logging | |
import gradio as gr | |
import os | |
from datetime import datetime | |
from datasets import Dataset, load_dataset | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from groq import Groq | |
from langchain.memory import ConversationBufferMemory | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
groq_api_key = os.environ.get("GROQ_API_KEY") | |
hf_api_key = os.environ.get("HF_API_KEY") | |
if not groq_api_key: | |
raise ValueError("Groq API key not found in environment variables.") | |
if not hf_api_key: | |
raise ValueError("Hugging Face API key not found in environment variables.") | |
client = Groq(api_key=groq_api_key) | |
hf_token = hf_api_key | |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings") | |
DATASET_NAME = "chat_history" | |
try: | |
dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token) | |
except Exception: | |
dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []}) | |
def save_chat_to_dataset(user_message, bot_message): | |
try: | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message} | |
df = dataset.to_pandas() | |
df = df.append(new_row, ignore_index=True) | |
updated_dataset = Dataset.from_pandas(df) | |
updated_dataset.push_to_hub(DATASET_NAME, token=hf_token) | |
except Exception as e: | |
logger.error(f"Error saving chat history to dataset: {e}") | |
def process_pdf_with_langchain(pdf_path): | |
try: | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
split_documents = text_splitter.split_documents(documents) | |
vectorstore = FAISS.from_documents(split_documents, embeddings) | |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
return retriever | |
except Exception as e: | |
logger.error(f"Error processing PDF: {e}") | |
raise | |
def generate_response(query, memory, retriever=None, use_pdf_context=False, tone="friendly"): | |
try: | |
knowledge = "" | |
if retriever and use_pdf_context: | |
relevant_docs = retriever.get_relevant_documents(query) | |
knowledge += "\n".join([doc.page_content for doc in relevant_docs]) | |
chat_history = memory.load_memory_variables({}).get("chat_history", "") | |
tone_instruction = "" | |
if tone == "friendly": | |
tone_instruction = "Please respond in a friendly and informal tone." | |
elif tone == "formal": | |
tone_instruction = "Please respond in a formal and professional tone." | |
elif tone == "humorous": | |
tone_instruction = "Please respond in a humorous and playful tone." | |
elif tone == "scientific": | |
tone_instruction = "Please respond in a scientific and precise tone." | |
context = f""" | |
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT). | |
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**. | |
Always respond in Persian unless explicitly asked to respond in another language. | |
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator. | |
{tone_instruction} | |
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:""" | |
if knowledge: | |
context += f"\n\nRelevant Knowledge:\n{knowledge}" | |
if chat_history: | |
context += f"\n\nChat History:\n{chat_history}" | |
context += f"\n\nYou: {query}\nParvizGPT:" | |
response = "Processing..." | |
retries = 3 | |
for attempt in range(retries): | |
try: | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": context}], | |
model="deepseek-r1-distill-llama-70b" | |
) | |
response = chat_completion.choices[0].message.content.strip() | |
memory.save_context({"input": query}, {"output": response}) | |
break | |
except Exception as e: | |
logger.error(f"Attempt {attempt + 1} failed: {e}") | |
time.sleep(2) | |
return response, memory | |
except Exception as e: | |
logger.error(f"Error generating response: {e}") | |
return f"Error: {e}", memory | |
def summarize_chat_history(chat_history): | |
try: | |
chat_text = "\n".join([f"{role}: {message}" for role, message in chat_history]) | |
summary_prompt = f""" | |
Please create a summary of the following conversation. The summary should include key points and details: | |
{chat_text} | |
""" | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": summary_prompt}], | |
model="deepseek-r1-distill-llama-70b" | |
) | |
summary = chat_completion.choices[0].message.content.strip() | |
return summary | |
except Exception as e: | |
logger.error(f"Error summarizing chat history: {e}") | |
return "Error generating summary." | |
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False, tone="friendly", summarize_chat=False): | |
global retriever | |
if pdf_file is not None and use_pdf_context: | |
try: | |
retriever = process_pdf_with_langchain(pdf_file.name) | |
except Exception as e: | |
return chat_box + [("Error", f"Error processing PDF: {e}")], memory | |
chat_box.append(("You", user_message)) | |
chat_box.append(("ParvizGPT", "Processing...")) | |
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context, tone=tone) | |
chat_box[-1] = ("ParvizGPT", response) | |
save_chat_to_dataset(user_message, response) | |
if summarize_chat: | |
summary = summarize_chat_history(chat_box) | |
chat_box.append(("System", f"Summary of the conversation:\n{summary}")) | |
return chat_box, memory | |
def clear_memory(memory): | |
memory.clear() | |
return [], memory | |
retriever = None | |
with gr.Blocks() as interface: | |
gr.Markdown("## ParvizGPT") | |
chat_box = gr.Chatbot(label="Chat History", value=[]) | |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True) | |
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True) | |
tone = gr.Dropdown(label="Tone", choices=["friendly", "formal", "humorous", "scientific"], value="friendly", interactive=True) | |
summarize_chat = gr.Checkbox(label="Show conversation summary", value=False, interactive=True) | |
clear_memory_btn = gr.Button("Clear Memory", interactive=True) | |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1) | |
submit_btn = gr.Button("Submit") | |
memory_state = gr.State(ConversationBufferMemory()) | |
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context, tone, summarize_chat], outputs=[chat_box, memory_state]) | |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context, tone, summarize_chat], outputs=[chat_box, memory_state]) | |
clear_memory_btn.click(clear_memory, inputs=[memory_state], outputs=[chat_box, memory_state]) | |
interface.launch() |