GIGAParviz commited on
Commit
0321bb3
·
verified ·
1 Parent(s): 4610416

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ import time # To simulate progress updates
11
+
12
+ client = Groq(api_key="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")
13
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
+
15
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
16
+
17
+ def process_pdf_with_langchain(pdf_path, progress_callback):
18
+ # progress_callback("Initializing PDF processing... 0%")
19
+ time.sleep(0.5)
20
+ loader = PyPDFLoader(pdf_path)
21
+ # progress_callback("Loading PDF... 20%")
22
+ documents = loader.load()
23
+ time.sleep(0.5)
24
+ # progress_callback("Splitting documents... 50%")
25
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
26
+ split_documents = text_splitter.split_documents(documents)
27
+ time.sleep(0.5)
28
+ # progress_callback("Creating vector store... 80%")
29
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
+ progress_callback("Processing complete! 100%")
32
+ return retriever
33
+
34
+ def upload_and_process(file, progress_display):
35
+ try:
36
+ global retriever
37
+ progress_updates = []
38
+
39
+ retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
40
+
41
+ return "\n".join(progress_updates), "File uploaded and processed successfully."
42
+ except Exception as e:
43
+ return "", f"Error processing file: {e}"
44
+
45
+ def gradio_interface(user_message, chat_box, enable_web_search=False):
46
+ global retriever
47
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
48
+ chat_box.append(("You", user_message))
49
+ chat_box.append(("ParvizGPT", response))
50
+ return chat_box
51
+
52
+ def clear_memory():
53
+ memory.clear()
54
+ return []
55
+
56
+ retriever = None
57
+ with gr.Blocks() as interface:
58
+ gr.Markdown("## ParvizGPT")
59
+ with gr.Row():
60
+ chat_box = gr.Chatbot(label="Chat History", value=[])
61
+ with gr.Row():
62
+ user_message = gr.Textbox(
63
+ label="Your Message",
64
+ placeholder="Type your message here and press Enter...",
65
+ lines=1,
66
+ interactive=True,
67
+ )
68
+ with gr.Row():
69
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
70
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
71
+ with gr.Row():
72
+ pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
73
+ progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
74
+ with gr.Row():
75
+ submit_btn = gr.Button("Submit")
76
+ pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
77
+
78
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
79
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
80
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
81
+
82
+ interface.launch()