Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.memory import ConversationBufferMemory
|
7 |
+
from groq import Groq
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import time # To simulate progress updates
|
11 |
+
|
12 |
+
client = Groq(api_key="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")
|
13 |
+
embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
14 |
+
|
15 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
16 |
+
|
17 |
+
def process_pdf_with_langchain(pdf_path, progress_callback):
|
18 |
+
# progress_callback("Initializing PDF processing... 0%")
|
19 |
+
time.sleep(0.5)
|
20 |
+
loader = PyPDFLoader(pdf_path)
|
21 |
+
# progress_callback("Loading PDF... 20%")
|
22 |
+
documents = loader.load()
|
23 |
+
time.sleep(0.5)
|
24 |
+
# progress_callback("Splitting documents... 50%")
|
25 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
26 |
+
split_documents = text_splitter.split_documents(documents)
|
27 |
+
time.sleep(0.5)
|
28 |
+
# progress_callback("Creating vector store... 80%")
|
29 |
+
vectorstore = FAISS.from_documents(split_documents, embedding_model)
|
30 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
31 |
+
progress_callback("Processing complete! 100%")
|
32 |
+
return retriever
|
33 |
+
|
34 |
+
def upload_and_process(file, progress_display):
|
35 |
+
try:
|
36 |
+
global retriever
|
37 |
+
progress_updates = []
|
38 |
+
|
39 |
+
retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
|
40 |
+
|
41 |
+
return "\n".join(progress_updates), "File uploaded and processed successfully."
|
42 |
+
except Exception as e:
|
43 |
+
return "", f"Error processing file: {e}"
|
44 |
+
|
45 |
+
def gradio_interface(user_message, chat_box, enable_web_search=False):
|
46 |
+
global retriever
|
47 |
+
response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
|
48 |
+
chat_box.append(("You", user_message))
|
49 |
+
chat_box.append(("ParvizGPT", response))
|
50 |
+
return chat_box
|
51 |
+
|
52 |
+
def clear_memory():
|
53 |
+
memory.clear()
|
54 |
+
return []
|
55 |
+
|
56 |
+
retriever = None
|
57 |
+
with gr.Blocks() as interface:
|
58 |
+
gr.Markdown("## ParvizGPT")
|
59 |
+
with gr.Row():
|
60 |
+
chat_box = gr.Chatbot(label="Chat History", value=[])
|
61 |
+
with gr.Row():
|
62 |
+
user_message = gr.Textbox(
|
63 |
+
label="Your Message",
|
64 |
+
placeholder="Type your message here and press Enter...",
|
65 |
+
lines=1,
|
66 |
+
interactive=True,
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
70 |
+
enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
|
71 |
+
with gr.Row():
|
72 |
+
pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
|
73 |
+
progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
|
74 |
+
with gr.Row():
|
75 |
+
submit_btn = gr.Button("Submit")
|
76 |
+
pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
|
77 |
+
|
78 |
+
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
|
79 |
+
user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
|
80 |
+
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
81 |
+
|
82 |
+
interface.launch()
|