GIGAParviz commited on
Commit
0af6850
·
verified ·
1 Parent(s): d48a4a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -162
app.py CHANGED
@@ -1,162 +1,162 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
- from langchain.embeddings import HuggingFaceEmbeddings # Updated for Persian embeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
- from serpapi import GoogleSearch
11
- import logging
12
-
13
- logging.basicConfig(level=logging.INFO)
14
- logger = logging.getLogger(__name__)
15
-
16
- client = Groq(api_key="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")
17
-
18
- embedding_model = HuggingFaceEmbeddings(model_name="HooshvareLab/bert-fa-base-uncased")
19
-
20
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
21
-
22
- def process_pdf_with_langchain(pdf_path):
23
- try:
24
- loader = PyPDFLoader(pdf_path)
25
- documents = loader.load()
26
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
27
- split_documents = text_splitter.split_documents(documents)
28
-
29
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
- return retriever
32
- except Exception as e:
33
- logger.error(f"Error processing PDF: {e}")
34
- raise
35
-
36
- SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
37
-
38
- def scrape_google_search(query, num_results=3):
39
- try:
40
- params = {
41
- "q": query,
42
- "hl": "fa",
43
- "gl": "ir",
44
- "num": num_results,
45
- "api_key": SERPAPI_KEY,
46
- }
47
- search = GoogleSearch(params)
48
- results = search.get_dict()
49
-
50
- if "error" in results:
51
- return f"Error: {results['error']}"
52
-
53
- search_results = []
54
- for result in results.get("organic_results", []):
55
- title = result.get("title", "No Title")
56
- link = result.get("link", "No Link")
57
- search_results.append(f"{title}: {link}")
58
- return "\n".join(search_results) if search_results else "No results found"
59
- except Exception as e:
60
- logger.error(f"Error scraping Google search: {e}")
61
- return f"Error: {e}"
62
-
63
- def scrape_webpage(url):
64
- try:
65
- headers = {
66
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
67
- }
68
- response = requests.get(url, headers=headers)
69
- response.raise_for_status()
70
-
71
- soup = BeautifulSoup(response.content, "html.parser")
72
- text = soup.get_text(separator="\n")
73
- return text.strip()
74
- except Exception as e:
75
- logger.error(f"Error scraping webpage {url}: {e}")
76
- return f"Error: {e}"
77
-
78
- def generate_response(query, retriever=None, use_web_search=False, scrape_web=False):
79
- try:
80
- knowledge = ""
81
-
82
- if retriever:
83
- relevant_docs = retriever.get_relevant_documents(query)
84
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
85
-
86
- if use_web_search:
87
- web_results = scrape_google_search(query)
88
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
89
-
90
- if scrape_web:
91
- urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")]
92
- for url in urls:
93
- webpage_content = scrape_webpage(url)
94
- knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}"
95
-
96
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
97
- context = (
98
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
99
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
100
- )
101
- if knowledge:
102
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
103
- if chat_history:
104
- context += f"\n\nChat History:\n{chat_history}"
105
-
106
- context += f"\n\nYou: {query}\nParvizGPT:"
107
-
108
- chat_completion = client.chat.completions.create(
109
- messages=[{"role": "user", "content": context}],
110
- model= "gemma2-9b-it" #"llama-3.3-70b-versatile",
111
- )
112
- response = chat_completion.choices[0].message.content.strip()
113
-
114
- memory.save_context({"input": query}, {"output": response})
115
- return response
116
- except Exception as e:
117
- logger.error(f"Error generating response: {e}")
118
- return f"Error: {e}"
119
-
120
- def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False, scrape_web=False):
121
- global retriever
122
- if pdf_file is not None:
123
- try:
124
- retriever = process_pdf_with_langchain(pdf_file.name)
125
- except Exception as e:
126
- return chat_box + [("Error", f"Error processing PDF: {e}")]
127
-
128
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search, scrape_web=scrape_web)
129
- chat_box.append(("You", user_message))
130
- chat_box.append(("ParvizGPT", response))
131
- return chat_box
132
-
133
- def clear_memory():
134
- memory.clear()
135
- return []
136
-
137
- retriever = None
138
-
139
- with gr.Blocks() as interface:
140
- gr.Markdown("## ParvizGPT")
141
- chat_box = gr.Chatbot(label="Chat History", value=[])
142
-
143
- user_message = gr.Textbox(
144
- label="Your Message",
145
- placeholder="Type your message here and press Enter...",
146
- lines=1,
147
- interactive=True,
148
- )
149
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
150
- scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False)
151
-
152
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
153
- pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
154
-
155
- submit_btn = gr.Button("Submit")
156
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
157
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
158
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
159
-
160
- interface.launch()
161
-
162
-
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain.embeddings import HuggingFaceEmbeddings # Updated for Persian embeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ from serpapi import GoogleSearch
11
+ import logging
12
+
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ client = Groq(api_key="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")
17
+
18
+ embedding_model = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
19
+
20
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
21
+
22
+ def process_pdf_with_langchain(pdf_path):
23
+ try:
24
+ loader = PyPDFLoader(pdf_path)
25
+ documents = loader.load()
26
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
27
+ split_documents = text_splitter.split_documents(documents)
28
+
29
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
+ return retriever
32
+ except Exception as e:
33
+ logger.error(f"Error processing PDF: {e}")
34
+ raise
35
+
36
+ SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
37
+
38
+ def scrape_google_search(query, num_results=3):
39
+ try:
40
+ params = {
41
+ "q": query,
42
+ "hl": "fa",
43
+ "gl": "ir",
44
+ "num": num_results,
45
+ "api_key": SERPAPI_KEY,
46
+ }
47
+ search = GoogleSearch(params)
48
+ results = search.get_dict()
49
+
50
+ if "error" in results:
51
+ return f"Error: {results['error']}"
52
+
53
+ search_results = []
54
+ for result in results.get("organic_results", []):
55
+ title = result.get("title", "No Title")
56
+ link = result.get("link", "No Link")
57
+ search_results.append(f"{title}: {link}")
58
+ return "\n".join(search_results) if search_results else "No results found"
59
+ except Exception as e:
60
+ logger.error(f"Error scraping Google search: {e}")
61
+ return f"Error: {e}"
62
+
63
+ def scrape_webpage(url):
64
+ try:
65
+ headers = {
66
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
67
+ }
68
+ response = requests.get(url, headers=headers)
69
+ response.raise_for_status()
70
+
71
+ soup = BeautifulSoup(response.content, "html.parser")
72
+ text = soup.get_text(separator="\n")
73
+ return text.strip()
74
+ except Exception as e:
75
+ logger.error(f"Error scraping webpage {url}: {e}")
76
+ return f"Error: {e}"
77
+
78
+ def generate_response(query, retriever=None, use_web_search=False, scrape_web=False):
79
+ try:
80
+ knowledge = ""
81
+
82
+ if retriever:
83
+ relevant_docs = retriever.get_relevant_documents(query)
84
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
85
+
86
+ if use_web_search:
87
+ web_results = scrape_google_search(query)
88
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
89
+
90
+ if scrape_web:
91
+ urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")]
92
+ for url in urls:
93
+ webpage_content = scrape_webpage(url)
94
+ knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}"
95
+
96
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
97
+ context = (
98
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
99
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
100
+ )
101
+ if knowledge:
102
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
103
+ if chat_history:
104
+ context += f"\n\nChat History:\n{chat_history}"
105
+
106
+ context += f"\n\nYou: {query}\nParvizGPT:"
107
+
108
+ chat_completion = client.chat.completions.create(
109
+ messages=[{"role": "user", "content": context}],
110
+ model= "deepseek-r1-distill-llama-70b"
111
+ )
112
+ response = chat_completion.choices[0].message.content.strip()
113
+
114
+ memory.save_context({"input": query}, {"output": response})
115
+ return response
116
+ except Exception as e:
117
+ logger.error(f"Error generating response: {e}")
118
+ return f"Error: {e}"
119
+
120
+ def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False, scrape_web=False):
121
+ global retriever
122
+ if pdf_file is not None:
123
+ try:
124
+ retriever = process_pdf_with_langchain(pdf_file.name)
125
+ except Exception as e:
126
+ return chat_box + [("Error", f"Error processing PDF: {e}")]
127
+
128
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search, scrape_web=scrape_web)
129
+ chat_box.append(("You", user_message))
130
+ chat_box.append(("ParvizGPT", response))
131
+ return chat_box
132
+
133
+ def clear_memory():
134
+ memory.clear()
135
+ return []
136
+
137
+ retriever = None
138
+
139
+ with gr.Blocks() as interface:
140
+ gr.Markdown("## ParvizGPT")
141
+ chat_box = gr.Chatbot(label="Chat History", value=[])
142
+
143
+ user_message = gr.Textbox(
144
+ label="Your Message",
145
+ placeholder="Type your message here and press Enter...",
146
+ lines=1,
147
+ interactive=True,
148
+ )
149
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
150
+ scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False)
151
+
152
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
153
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
154
+
155
+ submit_btn = gr.Button("Submit")
156
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
157
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
158
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
159
+
160
+ interface.launch()
161
+
162
+