Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ from langchain.document_loaders import PyPDFLoader
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
11 |
-
from langchain_core.vectorstores import InMemoryVectorStore
|
12 |
from groq import Groq
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
|
@@ -28,7 +27,6 @@ client = Groq(api_key=groq_api_key)
|
|
28 |
hf_token = hf_api_key
|
29 |
|
30 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
31 |
-
vector_store = InMemoryVectorStore(embeddings)
|
32 |
|
33 |
DATASET_NAME = "chat_history"
|
34 |
try:
|
@@ -51,13 +49,17 @@ def save_chat_to_dataset(user_message, bot_message):
|
|
51 |
logger.error(f"Error saving chat history to dataset: {e}")
|
52 |
|
53 |
def process_pdf_with_langchain(pdf_path):
|
|
|
54 |
try:
|
|
|
55 |
loader = PyPDFLoader(pdf_path)
|
56 |
documents = loader.load()
|
|
|
57 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
58 |
split_documents = text_splitter.split_documents(documents)
|
59 |
-
|
60 |
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
|
|
61 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
62 |
return retriever
|
63 |
except Exception as e:
|
@@ -65,6 +67,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
65 |
raise
|
66 |
|
67 |
def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
|
68 |
try:
|
69 |
knowledge = ""
|
70 |
|
@@ -88,7 +91,6 @@ def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
88 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
89 |
|
90 |
response = "در حال پردازش..."
|
91 |
-
|
92 |
retries = 3
|
93 |
for attempt in range(retries):
|
94 |
try:
|
@@ -109,7 +111,9 @@ def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
109 |
return f"Error: {e}", memory
|
110 |
|
111 |
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
|
|
|
112 |
global retriever
|
|
|
113 |
if pdf_file is not None and use_pdf_context:
|
114 |
try:
|
115 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
@@ -117,7 +121,6 @@ def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_cont
|
|
117 |
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
|
118 |
|
119 |
chat_box.append(("ParvizGPT", "در حال پردازش..."))
|
120 |
-
|
121 |
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
|
122 |
|
123 |
chat_box[-1] = ("You", user_message)
|
@@ -128,6 +131,7 @@ def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_cont
|
|
128 |
return chat_box, memory
|
129 |
|
130 |
def clear_memory(memory):
|
|
|
131 |
memory.clear()
|
132 |
return [], memory
|
133 |
|
@@ -137,7 +141,7 @@ with gr.Blocks() as interface:
|
|
137 |
gr.Markdown("## ParvizGPT")
|
138 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
139 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
140 |
-
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
|
141 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
142 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
143 |
submit_btn = gr.Button("Submit")
|
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
|
|
11 |
from groq import Groq
|
12 |
from langchain.memory import ConversationBufferMemory
|
13 |
|
|
|
27 |
hf_token = hf_api_key
|
28 |
|
29 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
|
|
30 |
|
31 |
DATASET_NAME = "chat_history"
|
32 |
try:
|
|
|
49 |
logger.error(f"Error saving chat history to dataset: {e}")
|
50 |
|
51 |
def process_pdf_with_langchain(pdf_path):
|
52 |
+
"""Process a PDF file and create a FAISS retriever."""
|
53 |
try:
|
54 |
+
# Load the PDF
|
55 |
loader = PyPDFLoader(pdf_path)
|
56 |
documents = loader.load()
|
57 |
+
|
58 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
59 |
split_documents = text_splitter.split_documents(documents)
|
60 |
+
|
61 |
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
62 |
+
|
63 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
64 |
return retriever
|
65 |
except Exception as e:
|
|
|
67 |
raise
|
68 |
|
69 |
def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
70 |
+
"""Generate a response using the Groq model and retrieved PDF context."""
|
71 |
try:
|
72 |
knowledge = ""
|
73 |
|
|
|
91 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
92 |
|
93 |
response = "در حال پردازش..."
|
|
|
94 |
retries = 3
|
95 |
for attempt in range(retries):
|
96 |
try:
|
|
|
111 |
return f"Error: {e}", memory
|
112 |
|
113 |
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
|
114 |
+
"""Handle the Gradio interface interactions."""
|
115 |
global retriever
|
116 |
+
|
117 |
if pdf_file is not None and use_pdf_context:
|
118 |
try:
|
119 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
|
|
121 |
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
|
122 |
|
123 |
chat_box.append(("ParvizGPT", "در حال پردازش..."))
|
|
|
124 |
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
|
125 |
|
126 |
chat_box[-1] = ("You", user_message)
|
|
|
131 |
return chat_box, memory
|
132 |
|
133 |
def clear_memory(memory):
|
134 |
+
"""Clear the conversation memory."""
|
135 |
memory.clear()
|
136 |
return [], memory
|
137 |
|
|
|
141 |
gr.Markdown("## ParvizGPT")
|
142 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
143 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
144 |
+
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
|
145 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
146 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
147 |
submit_btn = gr.Button("Submit")
|