Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.memory import ConversationBufferMemory
|
7 |
+
from groq import Groq
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
|
11 |
+
client = Groq(api_key="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")
|
12 |
+
embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
13 |
+
|
14 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
15 |
+
|
16 |
+
def process_pdf_with_langchain(pdf_path):
|
17 |
+
"""Process the PDF file using LangChain for RAG."""
|
18 |
+
loader = PyPDFLoader(pdf_path)
|
19 |
+
documents = loader.load()
|
20 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
21 |
+
split_documents = text_splitter.split_documents(documents)
|
22 |
+
|
23 |
+
vectorstore = FAISS.from_documents(split_documents, embedding_model)
|
24 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
25 |
+
return retriever
|
26 |
+
|
27 |
+
def scrape_google_search(query, num_results=3):
|
28 |
+
"""Search Google and return the top results."""
|
29 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
30 |
+
search_url = f"https://www.google.com/search?q={query}"
|
31 |
+
response = requests.get(search_url, headers=headers)
|
32 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
33 |
+
|
34 |
+
results = []
|
35 |
+
for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
|
36 |
+
title = g.find('h3').text
|
37 |
+
link = g.find('a')['href']
|
38 |
+
results.append(f"{title}: {link}")
|
39 |
+
return "\n".join(results)
|
40 |
+
|
41 |
+
def generate_response(query, retriever=None, use_web_search=False):
|
42 |
+
"""Generate a response using LangChain with optional retriever and web search."""
|
43 |
+
knowledge = ""
|
44 |
+
|
45 |
+
if retriever:
|
46 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
47 |
+
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
|
48 |
+
|
49 |
+
if use_web_search:
|
50 |
+
web_results = scrape_google_search(query)
|
51 |
+
knowledge += f"\n\nWeb Search Results:\n{web_results}"
|
52 |
+
|
53 |
+
chat_history = memory.load_memory_variables({}).get("chat_history", "")
|
54 |
+
context = (
|
55 |
+
f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
|
56 |
+
f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
|
57 |
+
)
|
58 |
+
if knowledge:
|
59 |
+
context += f"\n\nRelevant Knowledge:\n{knowledge}"
|
60 |
+
if chat_history:
|
61 |
+
context += f"\n\nChat History:\n{chat_history}"
|
62 |
+
|
63 |
+
context += f"\n\nYou: {query}\nParvizGPT:"
|
64 |
+
|
65 |
+
chat_completion = client.chat.completions.create(
|
66 |
+
messages=[{"role": "user", "content": context}],
|
67 |
+
model="llama-3.3-70b-versatile",
|
68 |
+
)
|
69 |
+
response = chat_completion.choices[0].message.content.strip()
|
70 |
+
|
71 |
+
memory.save_context({"input": query}, {"output": response})
|
72 |
+
return response
|
73 |
+
|
74 |
+
def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
|
75 |
+
global retriever
|
76 |
+
if pdf_file is not None:
|
77 |
+
try:
|
78 |
+
retriever = process_pdf_with_langchain(pdf_file.name)
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error processing PDF: {e}"
|
81 |
+
|
82 |
+
response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
|
83 |
+
return response
|
84 |
+
|
85 |
+
def clear_memory():
|
86 |
+
memory.clear()
|
87 |
+
return "Memory cleared!"
|
88 |
+
|
89 |
+
retriever = None
|
90 |
+
|
91 |
+
with gr.Blocks() as interface:
|
92 |
+
gr.Markdown("## ParvizGPT with Memory and Web Search Toggle")
|
93 |
+
with gr.Row():
|
94 |
+
user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
|
95 |
+
submit_btn = gr.Button("Submit")
|
96 |
+
with gr.Row():
|
97 |
+
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath")
|
98 |
+
enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
|
99 |
+
with gr.Row():
|
100 |
+
clear_memory_btn = gr.Button("Clear Memory")
|
101 |
+
response_output = gr.Textbox(label="Response", placeholder="ParvizGPT's response will appear here.")
|
102 |
+
|
103 |
+
submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=response_output)
|
104 |
+
clear_memory_btn.click(clear_memory, inputs=[], outputs=response_output)
|
105 |
+
|
106 |
+
gr.HTML(
|
107 |
+
"""
|
108 |
+
<script>
|
109 |
+
document.addEventListener("keydown", function(event) {
|
110 |
+
if (event.key === "Enter" && !event.shiftKey) {
|
111 |
+
event.preventDefault();
|
112 |
+
document.querySelector('button[title="Submit"]').click();
|
113 |
+
}
|
114 |
+
});
|
115 |
+
</script>
|
116 |
+
"""
|
117 |
+
)
|
118 |
+
|
119 |
+
interface.launch()
|