GIGAParviz commited on
Commit
22bd6ca
·
verified ·
1 Parent(s): ef988e9

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -0
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+
11
+ client = Groq(api_key="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")
12
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
13
+
14
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
15
+
16
+ def process_pdf_with_langchain(pdf_path):
17
+ """Process the PDF file using LangChain for RAG."""
18
+ loader = PyPDFLoader(pdf_path)
19
+ documents = loader.load()
20
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
21
+ split_documents = text_splitter.split_documents(documents)
22
+
23
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
24
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
25
+ return retriever
26
+
27
+ def scrape_google_search(query, num_results=3):
28
+ """Search Google and return the top results."""
29
+ headers = {"User-Agent": "Mozilla/5.0"}
30
+ search_url = f"https://www.google.com/search?q={query}"
31
+ response = requests.get(search_url, headers=headers)
32
+ soup = BeautifulSoup(response.text, "html.parser")
33
+
34
+ results = []
35
+ for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
36
+ title = g.find('h3').text
37
+ link = g.find('a')['href']
38
+ results.append(f"{title}: {link}")
39
+ return "\n".join(results)
40
+
41
+ def generate_response(query, retriever=None, use_web_search=False):
42
+ """Generate a response using LangChain with optional retriever and web search."""
43
+ knowledge = ""
44
+
45
+ if retriever:
46
+ relevant_docs = retriever.get_relevant_documents(query)
47
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
48
+
49
+ if use_web_search:
50
+ web_results = scrape_google_search(query)
51
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
52
+
53
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
54
+ context = (
55
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
56
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
57
+ )
58
+ if knowledge:
59
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
60
+ if chat_history:
61
+ context += f"\n\nChat History:\n{chat_history}"
62
+
63
+ context += f"\n\nYou: {query}\nParvizGPT:"
64
+
65
+ chat_completion = client.chat.completions.create(
66
+ messages=[{"role": "user", "content": context}],
67
+ model="llama-3.3-70b-versatile",
68
+ )
69
+ response = chat_completion.choices[0].message.content.strip()
70
+
71
+ memory.save_context({"input": query}, {"output": response})
72
+ return response
73
+
74
+ def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
75
+ global retriever
76
+ if pdf_file is not None:
77
+ try:
78
+ retriever = process_pdf_with_langchain(pdf_file.name)
79
+ except Exception as e:
80
+ return f"Error processing PDF: {e}"
81
+
82
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
83
+ return response
84
+
85
+ def clear_memory():
86
+ memory.clear()
87
+ return "Memory cleared!"
88
+
89
+ retriever = None
90
+
91
+ with gr.Blocks() as interface:
92
+ gr.Markdown("## ParvizGPT with Memory and Web Search Toggle")
93
+ with gr.Row():
94
+ user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
95
+ submit_btn = gr.Button("Submit")
96
+ with gr.Row():
97
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath")
98
+ enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
99
+ with gr.Row():
100
+ clear_memory_btn = gr.Button("Clear Memory")
101
+ response_output = gr.Textbox(label="Response", placeholder="ParvizGPT's response will appear here.")
102
+
103
+ submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=response_output)
104
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=response_output)
105
+
106
+ gr.HTML(
107
+ """
108
+ <script>
109
+ document.addEventListener("keydown", function(event) {
110
+ if (event.key === "Enter" && !event.shiftKey) {
111
+ event.preventDefault();
112
+ document.querySelector('button[title="Submit"]').click();
113
+ }
114
+ });
115
+ </script>
116
+ """
117
+ )
118
+
119
+ interface.launch()