GIGAParviz commited on
Commit
30d6d16
·
verified ·
1 Parent(s): 5d148bd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ from serpapi import GoogleSearch
11
+
12
+
13
+ client = Groq(api_key="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")
14
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
15
+
16
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
+
18
+ def process_pdf_with_langchain(pdf_path):
19
+
20
+ loader = PyPDFLoader(pdf_path)
21
+ documents = loader.load()
22
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
23
+ split_documents = text_splitter.split_documents(documents)
24
+
25
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
26
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
27
+ return retriever
28
+
29
+ SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
30
+
31
+ def scrape_google_search(query, num_results=3):
32
+ params = {
33
+ "q": query,
34
+ "hl": "fa",
35
+ "gl": "ir",
36
+ "num": num_results,
37
+ "api_key": SERPAPI_KEY,
38
+ }
39
+ search = GoogleSearch(params)
40
+ results = search.get_dict()
41
+
42
+ if "error" in results:
43
+ return f"Error: {results['error']}"
44
+
45
+ search_results = []
46
+ for result in results.get("organic_results", []):
47
+ title = result.get("title", "No Title")
48
+ link = result.get("link", "No Link")
49
+ search_results.append(f"{title}: {link}")
50
+ return "\n".join(search_results) if search_results else "No results found"
51
+
52
+ def generate_response(query, retriever=None, use_web_search=False):
53
+
54
+ knowledge = ""
55
+
56
+ if retriever:
57
+ relevant_docs = retriever.get_relevant_documents(query)
58
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
59
+
60
+ if use_web_search:
61
+ web_results = scrape_google_search(query)
62
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
63
+
64
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
65
+ context = (
66
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
67
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
68
+ )
69
+ if knowledge:
70
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
71
+ if chat_history:
72
+ context += f"\n\nChat History:\n{chat_history}"
73
+
74
+ context += f"\n\nYou: {query}\nParvizGPT:"
75
+
76
+ chat_completion = client.chat.completions.create(
77
+ messages=[{"role": "user", "content": context}],
78
+ model="llama-3.3-70b-versatile",
79
+ )
80
+ response = chat_completion.choices[0].message.content.strip()
81
+
82
+ memory.save_context({"input": query}, {"output": response})
83
+ return response
84
+
85
+ def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False):
86
+ global retriever
87
+ if pdf_file is not None:
88
+ try:
89
+ retriever = process_pdf_with_langchain(pdf_file.name)
90
+ except Exception as e:
91
+ return chat_box + [("Error", f"Error processing PDF: {e}")]
92
+
93
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
94
+ chat_box.append(("You", user_message))
95
+ chat_box.append(("ParvizGPT", response))
96
+ return chat_box
97
+
98
+ def clear_memory():
99
+ memory.clear()
100
+ return []
101
+
102
+ retriever = None
103
+ with gr.Blocks() as interface:
104
+ gr.Markdown("## ParvizGPT")
105
+ # with gr.Row():
106
+ chat_box = gr.Chatbot(label="Chat History", value=[])
107
+
108
+ # with gr.Row():
109
+ user_message = gr.Textbox(
110
+ label="Your Message",
111
+ placeholder="Type your message here and press Enter...",
112
+ lines=1,
113
+ interactive=True,
114
+ )
115
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
116
+
117
+ # with gr.Row():
118
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
119
+ # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
120
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
121
+
122
+ submit_btn = gr.Button("Submit")
123
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
124
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
125
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
126
+
127
+ interface.launch()