GIGAParviz commited on
Commit
7d02373
·
verified ·
1 Parent(s): 57d7154

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -119
app.py DELETED
@@ -1,119 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
-
11
- client = Groq(api_key="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")
12
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
13
-
14
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
15
-
16
- def process_pdf_with_langchain(pdf_path):
17
- """Process the PDF file using LangChain for RAG."""
18
- loader = PyPDFLoader(pdf_path)
19
- documents = loader.load()
20
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
21
- split_documents = text_splitter.split_documents(documents)
22
-
23
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
24
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
25
- return retriever
26
-
27
- def scrape_google_search(query, num_results=3):
28
- """Search Google and return the top results."""
29
- headers = {"User-Agent": "Mozilla/5.0"}
30
- search_url = f"https://www.google.com/search?q={query}"
31
- response = requests.get(search_url, headers=headers)
32
- soup = BeautifulSoup(response.text, "html.parser")
33
-
34
- results = []
35
- for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
36
- title = g.find('h3').text
37
- link = g.find('a')['href']
38
- results.append(f"{title}: {link}")
39
- return "\n".join(results)
40
-
41
- def generate_response(query, retriever=None, use_web_search=False):
42
- """Generate a response using LangChain with optional retriever and web search."""
43
- knowledge = ""
44
-
45
- if retriever:
46
- relevant_docs = retriever.get_relevant_documents(query)
47
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
48
-
49
- if use_web_search:
50
- web_results = scrape_google_search(query)
51
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
52
-
53
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
54
- context = (
55
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
56
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
57
- )
58
- if knowledge:
59
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
60
- if chat_history:
61
- context += f"\n\nChat History:\n{chat_history}"
62
-
63
- context += f"\n\nYou: {query}\nParvizGPT:"
64
-
65
- chat_completion = client.chat.completions.create(
66
- messages=[{"role": "user", "content": context}],
67
- model="llama-3.3-70b-versatile",
68
- )
69
- response = chat_completion.choices[0].message.content.strip()
70
-
71
- memory.save_context({"input": query}, {"output": response})
72
- return response
73
-
74
- def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
75
- global retriever
76
- if pdf_file is not None:
77
- try:
78
- retriever = process_pdf_with_langchain(pdf_file.name)
79
- except Exception as e:
80
- return f"Error processing PDF: {e}"
81
-
82
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
83
- return response
84
-
85
- def clear_memory():
86
- memory.clear()
87
- return "Memory cleared!"
88
-
89
- retriever = None
90
-
91
- with gr.Blocks() as interface:
92
- gr.Markdown("## ParvizGPT with Memory and Web Search Toggle")
93
- with gr.Row():
94
- user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
95
- submit_btn = gr.Button("Submit")
96
- with gr.Row():
97
- pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath")
98
- enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
99
- with gr.Row():
100
- clear_memory_btn = gr.Button("Clear Memory")
101
- response_output = gr.Textbox(label="Response", placeholder="ParvizGPT's response will appear here.")
102
-
103
- submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=response_output)
104
- clear_memory_btn.click(clear_memory, inputs=[], outputs=response_output)
105
-
106
- gr.HTML(
107
- """
108
- <script>
109
- document.addEventListener("keydown", function(event) {
110
- if (event.key === "Enter" && !event.shiftKey) {
111
- event.preventDefault();
112
- document.querySelector('button[title="Submit"]').click();
113
- }
114
- });
115
- </script>
116
- """
117
- )
118
-
119
- interface.launch()