GIGAParviz commited on
Commit
9598aa7
·
verified ·
1 Parent(s): 595fc6d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -127
app.py DELETED
@@ -1,127 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
- from serpapi import GoogleSearch
11
-
12
-
13
- client = Groq(api_key="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")
14
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
15
-
16
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
-
18
- def process_pdf_with_langchain(pdf_path):
19
-
20
- loader = PyPDFLoader(pdf_path)
21
- documents = loader.load()
22
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
23
- split_documents = text_splitter.split_documents(documents)
24
-
25
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
26
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
27
- return retriever
28
-
29
- SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
30
-
31
- def scrape_google_search(query, num_results=3):
32
- params = {
33
- "q": query,
34
- "hl": "fa",
35
- "gl": "ir",
36
- "num": num_results,
37
- "api_key": SERPAPI_KEY,
38
- }
39
- search = GoogleSearch(params)
40
- results = search.get_dict()
41
-
42
- if "error" in results:
43
- return f"Error: {results['error']}"
44
-
45
- search_results = []
46
- for result in results.get("organic_results", []):
47
- title = result.get("title", "No Title")
48
- link = result.get("link", "No Link")
49
- search_results.append(f"{title}: {link}")
50
- return "\n".join(search_results) if search_results else "No results found"
51
-
52
- def generate_response(query, retriever=None, use_web_search=False):
53
-
54
- knowledge = ""
55
-
56
- if retriever:
57
- relevant_docs = retriever.get_relevant_documents(query)
58
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
59
-
60
- if use_web_search:
61
- web_results = scrape_google_search(query)
62
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
63
-
64
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
65
- context = (
66
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
67
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
68
- )
69
- if knowledge:
70
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
71
- if chat_history:
72
- context += f"\n\nChat History:\n{chat_history}"
73
-
74
- context += f"\n\nYou: {query}\nParvizGPT:"
75
-
76
- chat_completion = client.chat.completions.create(
77
- messages=[{"role": "user", "content": context}],
78
- model="llama-3.3-70b-versatile",
79
- )
80
- response = chat_completion.choices[0].message.content.strip()
81
-
82
- memory.save_context({"input": query}, {"output": response})
83
- return response
84
-
85
- def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False):
86
- global retriever
87
- if pdf_file is not None:
88
- try:
89
- retriever = process_pdf_with_langchain(pdf_file.name)
90
- except Exception as e:
91
- return chat_box + [("Error", f"Error processing PDF: {e}")]
92
-
93
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
94
- chat_box.append(("You", user_message))
95
- chat_box.append(("ParvizGPT", response))
96
- return chat_box
97
-
98
- def clear_memory():
99
- memory.clear()
100
- return []
101
-
102
- retriever = None
103
- with gr.Blocks() as interface:
104
- gr.Markdown("## ParvizGPT")
105
- # with gr.Row():
106
- chat_box = gr.Chatbot(label="Chat History", value=[])
107
-
108
- # with gr.Row():
109
- user_message = gr.Textbox(
110
- label="Your Message",
111
- placeholder="Type your message here and press Enter...",
112
- lines=1,
113
- interactive=True,
114
- )
115
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
116
-
117
- # with gr.Row():
118
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
119
- # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
120
- pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
121
-
122
- submit_btn = gr.Button("Submit")
123
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
124
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
125
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
126
-
127
- interface.launch()