Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import time
|
2 |
import logging
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -12,13 +15,43 @@ from langchain.memory import ConversationBufferMemory
|
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
20 |
vector_store = InMemoryVectorStore(embeddings)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def process_pdf_with_langchain(pdf_path):
|
23 |
try:
|
24 |
loader = PyPDFLoader(pdf_path)
|
@@ -37,13 +70,13 @@ def generate_response(query, retriever=None, use_pdf_context=False):
|
|
37 |
try:
|
38 |
knowledge = ""
|
39 |
|
40 |
-
if retriever and use_pdf_context:
|
41 |
relevant_docs = retriever.get_relevant_documents(query)
|
42 |
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
|
43 |
|
44 |
chat_history = memory.load_memory_variables({}).get("chat_history", "")
|
45 |
context = f"""
|
46 |
-
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology
|
47 |
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
|
48 |
Always respond in Persian unless explicitly asked to respond in another language.
|
49 |
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
|
@@ -79,7 +112,7 @@ def generate_response(query, retriever=None, use_pdf_context=False):
|
|
79 |
|
80 |
def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
|
81 |
global retriever
|
82 |
-
if pdf_file is not None and use_pdf_context:
|
83 |
try:
|
84 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
85 |
except Exception as e:
|
@@ -92,6 +125,8 @@ def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=Fals
|
|
92 |
chat_box[-1] = ("You", user_message)
|
93 |
chat_box.append(("ParvizGPT", response))
|
94 |
|
|
|
|
|
95 |
return chat_box
|
96 |
|
97 |
def clear_memory():
|
@@ -104,7 +139,7 @@ with gr.Blocks() as interface:
|
|
104 |
gr.Markdown("## ParvizGPT")
|
105 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
106 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
107 |
-
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
|
108 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
109 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
110 |
submit_btn = gr.Button("Submit")
|
|
|
1 |
import time
|
2 |
import logging
|
3 |
import gradio as gr
|
4 |
+
import os
|
5 |
+
from datetime import datetime
|
6 |
+
from datasets import Dataset, load_dataset
|
7 |
from langchain.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
groq_api_key = os.environ.get("GROQ_API_KEY")
|
19 |
+
hf_api_key = os.environ.get("HF_API_KEY")
|
20 |
|
21 |
+
if not groq_api_key:
|
22 |
+
raise ValueError("Groq API key not found in environment variables.")
|
23 |
+
if not hf_api_key:
|
24 |
+
raise ValueError("Hugging Face API key not found in environment variables.")
|
25 |
+
|
26 |
+
client = Groq(api_key=groq_api_key)
|
27 |
+
|
28 |
+
hf_token = hf_api_key
|
29 |
|
30 |
+
memory = ConversationBufferMemory()
|
31 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
32 |
vector_store = InMemoryVectorStore(embeddings)
|
33 |
|
34 |
+
DATASET_NAME = "chat_history"
|
35 |
+
try:
|
36 |
+
dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
|
37 |
+
except Exception:
|
38 |
+
|
39 |
+
dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})
|
40 |
+
|
41 |
+
def save_chat_to_dataset(user_message, bot_message):
|
42 |
+
"""Save chat history to Hugging Face Dataset."""
|
43 |
+
try:
|
44 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
45 |
+
new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
|
46 |
+
|
47 |
+
df = dataset.to_pandas()
|
48 |
+
df = df.append(new_row, ignore_index=True)
|
49 |
+
updated_dataset = Dataset.from_pandas(df)
|
50 |
+
|
51 |
+
updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Error saving chat history to dataset: {e}")
|
54 |
+
|
55 |
def process_pdf_with_langchain(pdf_path):
|
56 |
try:
|
57 |
loader = PyPDFLoader(pdf_path)
|
|
|
70 |
try:
|
71 |
knowledge = ""
|
72 |
|
73 |
+
if retriever and use_pdf_context:
|
74 |
relevant_docs = retriever.get_relevant_documents(query)
|
75 |
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
|
76 |
|
77 |
chat_history = memory.load_memory_variables({}).get("chat_history", "")
|
78 |
context = f"""
|
79 |
+
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT).
|
80 |
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
|
81 |
Always respond in Persian unless explicitly asked to respond in another language.
|
82 |
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
|
|
|
112 |
|
113 |
def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
|
114 |
global retriever
|
115 |
+
if pdf_file is not None and use_pdf_context:
|
116 |
try:
|
117 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
118 |
except Exception as e:
|
|
|
125 |
chat_box[-1] = ("You", user_message)
|
126 |
chat_box.append(("ParvizGPT", response))
|
127 |
|
128 |
+
save_chat_to_dataset(user_message, response)
|
129 |
+
|
130 |
return chat_box
|
131 |
|
132 |
def clear_memory():
|
|
|
139 |
gr.Markdown("## ParvizGPT")
|
140 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
141 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
142 |
+
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True) # Checkbox for PDF context
|
143 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
144 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
145 |
submit_btn = gr.Button("Submit")
|