GIGAParviz commited on
Commit
af1ef2d
·
verified ·
1 Parent(s): 792de28

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -0
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ import time
11
+
12
+
13
+ client = Groq(api_key="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")
14
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
15
+
16
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
+
18
+ def process_pdf_with_langchain(pdf_path, progress_callback):
19
+ # progress_callback("Initializing PDF processing... 0%")
20
+ time.sleep(0.5)
21
+ loader = PyPDFLoader(pdf_path)
22
+ # progress_callback("Loading PDF... 20%")
23
+ documents = loader.load()
24
+ time.sleep(0.5)
25
+ # progress_callback("Splitting documents... 50%")
26
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
27
+ split_documents = text_splitter.split_documents(documents)
28
+ time.sleep(0.5)
29
+ # progress_callback("Creating vector store... 80%")
30
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
31
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
32
+ progress_callback("Processing complete! 100%")
33
+ return retriever
34
+
35
+
36
+ def scrape_google_search(query, num_results=3):
37
+
38
+ headers = {"User-Agent": "Mozilla/5.0"}
39
+ search_url = f"https://www.google.com/search?q={query}"
40
+ response = requests.get(search_url, headers=headers)
41
+ soup = BeautifulSoup(response.text, "html.parser")
42
+
43
+ results = []
44
+ for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
45
+ title = g.find('h3').text
46
+ link = g.find('a')['href']
47
+ results.append(f"{title}: {link}")
48
+ return "\n".join(results)
49
+
50
+
51
+ def generate_response(query, retriever=None, use_web_search=False):
52
+
53
+ knowledge = ""
54
+
55
+ if retriever:
56
+ relevant_docs = retriever.get_relevant_documents(query)
57
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
58
+
59
+ if use_web_search:
60
+ web_results = scrape_google_search(query)
61
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
62
+
63
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
64
+ context = (
65
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
66
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
67
+ )
68
+ if knowledge:
69
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
70
+ if chat_history:
71
+ context += f"\n\nChat History:\n{chat_history}"
72
+
73
+ context += f"\n\nYou: {query}\nParvizGPT:"
74
+
75
+ chat_completion = client.chat.completions.create(
76
+ messages=[{"role": "user", "content": context}],
77
+ model="llama-3.3-70b-versatile",
78
+ )
79
+ response = chat_completion.choices[0].message.content.strip()
80
+
81
+ memory.save_context({"input": query}, {"output": response})
82
+ return response
83
+
84
+ def upload_and_process(file, progress_display):
85
+ try:
86
+ global retriever
87
+ progress_updates = []
88
+
89
+ retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
90
+
91
+ return "\n".join(progress_updates), "File uploaded and processed successfully."
92
+ except Exception as e:
93
+ return "", f"Error processing file: {e}"
94
+
95
+ def gradio_interface(user_message, chat_box, enable_web_search=False):
96
+ global retriever
97
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
98
+ chat_box.append(("You", user_message))
99
+ chat_box.append(("ParvizGPT", response))
100
+ return chat_box
101
+
102
+ def clear_memory():
103
+ memory.clear()
104
+ return []
105
+
106
+ retriever = None
107
+ with gr.Blocks() as interface:
108
+ gr.Markdown("## ParvizGPT")
109
+ with gr.Row():
110
+ chat_box = gr.Chatbot(label="Chat History", value=[])
111
+ with gr.Row():
112
+ user_message = gr.Textbox(
113
+ label="Your Message",
114
+ placeholder="Type your message here and press Enter...",
115
+ lines=1,
116
+ interactive=True,
117
+ )
118
+ with gr.Row():
119
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
120
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
121
+ with gr.Row():
122
+ pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
123
+ progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
124
+ with gr.Row():
125
+ submit_btn = gr.Button("Submit")
126
+ pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
127
+
128
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
129
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
130
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
131
+
132
+ interface.launch()