Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,14 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain_core.vectorstores import InMemoryVectorStore
|
9 |
from groq import Groq
|
|
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
client = Groq(api_key="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")
|
15 |
|
|
|
16 |
|
17 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
18 |
vector_store = InMemoryVectorStore(embeddings)
|
@@ -24,7 +26,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
25 |
split_documents = text_splitter.split_documents(documents)
|
26 |
|
27 |
-
vectorstore = FAISS.from_documents(split_documents,
|
28 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
29 |
return retriever
|
30 |
except Exception as e:
|
@@ -49,7 +51,6 @@ def generate_response(query, retriever=None):
|
|
49 |
|
50 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
51 |
|
52 |
-
# ابتدا یک پیام موقت نمایش داده شود
|
53 |
response = "در حال پردازش..."
|
54 |
|
55 |
retries = 3
|
@@ -71,9 +72,6 @@ def generate_response(query, retriever=None):
|
|
71 |
logger.error(f"Error generating response: {e}")
|
72 |
return f"Error: {e}"
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
def gradio_interface(user_message, chat_box, pdf_file=None):
|
78 |
global retriever
|
79 |
if pdf_file is not None:
|
@@ -108,4 +106,4 @@ with gr.Blocks() as interface:
|
|
108 |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
109 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
110 |
|
111 |
-
interface.launch()
|
|
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain_core.vectorstores import InMemoryVectorStore
|
9 |
from groq import Groq
|
10 |
+
from langchain.memory import ConversationBufferMemory # Import memory
|
11 |
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
client = Groq(api_key="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")
|
16 |
|
17 |
+
memory = ConversationBufferMemory()
|
18 |
|
19 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
20 |
vector_store = InMemoryVectorStore(embeddings)
|
|
|
26 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
27 |
split_documents = text_splitter.split_documents(documents)
|
28 |
|
29 |
+
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
30 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
31 |
return retriever
|
32 |
except Exception as e:
|
|
|
51 |
|
52 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
53 |
|
|
|
54 |
response = "در حال پردازش..."
|
55 |
|
56 |
retries = 3
|
|
|
72 |
logger.error(f"Error generating response: {e}")
|
73 |
return f"Error: {e}"
|
74 |
|
|
|
|
|
|
|
75 |
def gradio_interface(user_message, chat_box, pdf_file=None):
|
76 |
global retriever
|
77 |
if pdf_file is not None:
|
|
|
106 |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
107 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
108 |
|
109 |
+
interface.launch()
|