GIGAParviz commited on
Commit
bffc7fe
·
verified ·
1 Parent(s): 990fb46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -126
app.py CHANGED
@@ -1,126 +1,126 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
-
11
-
12
- client = Groq(api_key="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")
13
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
-
15
-
16
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
-
18
- def process_pdf_with_langchain(pdf_path):
19
-
20
- loader = PyPDFLoader(pdf_path)
21
- documents = loader.load()
22
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
23
- split_documents = text_splitter.split_documents(documents)
24
-
25
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
26
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
27
- return retriever
28
-
29
- def scrape_google_search(query, num_results=3):
30
-
31
- headers = {"User-Agent": "Mozilla/5.0"}
32
- search_url = f"https://www.google.com/search?q={query}"
33
- response = requests.get(search_url, headers=headers)
34
- soup = BeautifulSoup(response.text, "html.parser")
35
-
36
- results = []
37
- for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
38
- title = g.find('h3').text
39
- link = g.find('a')['href']
40
- results.append(f"{title}: {link}")
41
- return "\n".join(results)
42
-
43
- def generate_response(query, retriever=None, use_web_search=False):
44
-
45
- knowledge = ""
46
-
47
- if retriever:
48
- relevant_docs = retriever.get_relevant_documents(query)
49
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
50
-
51
- if use_web_search:
52
- web_results = scrape_google_search(query)
53
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
54
-
55
- chat_history = memory.load_memory_variables({}).get("chat_history", [])
56
- context = (
57
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
58
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
59
- )
60
- if knowledge:
61
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
62
- if chat_history:
63
- context += f"\n\nChat History:\n" + "\n".join([f"User: {msg['content']}" for msg in chat_history])
64
-
65
- context += f"\n\nYou: {query}\nParvizGPT:"
66
-
67
- chat_completion = client.chat.completions.create(
68
- messages=[{"role": "user", "content": context}],
69
- model="llama-3.3-70b-versatile",
70
- )
71
- response = chat_completion.choices[0].message.content.strip()
72
-
73
- memory.save_context({"input": query}, {"output": response})
74
- return response, memory.load_memory_variables({}).get("chat_history", [])
75
-
76
- def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
77
- global retriever
78
- if pdf_file is not None:
79
- try:
80
- retriever = process_pdf_with_langchain(pdf_file.name)
81
- except Exception as e:
82
- return f"Error processing PDF: {e}", []
83
-
84
- response, chat_history = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
85
- chat_history_display = "\n".join([f"User: {msg['content']}" if msg['role'] == 'user' else f"ParvizGPT: {msg['content']}" for msg in chat_history])
86
- return response, chat_history_display
87
-
88
- def clear_memory():
89
- memory.clear()
90
- return "Memory cleared!", ""
91
-
92
- retriever = None
93
-
94
- with gr.Blocks() as interface:
95
- gr.Markdown("## ParvizGPT")
96
- with gr.Row():
97
- user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
98
- with gr.Row():
99
- pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="file")
100
- enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
101
-
102
- with gr.Row():
103
- chat_history = gr.Textbox(label="Chat History", lines=10, interactive=False)
104
-
105
- with gr.Row():
106
- clear_memory_btn = gr.Button("Clear Memory")
107
- submit_btn = gr.Button("Submit")
108
-
109
-
110
- submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=[chat_history])
111
- clear_memory_btn.click(clear_memory, inputs=[], outputs=[chat_history])
112
-
113
- gr.HTML(
114
- """
115
- <script>
116
- document.addEventListener("keydown", function(event) {
117
- if (event.key === "Enter" && !event.shiftKey) {
118
- event.preventDefault();
119
- document.querySelector('button[title="Submit"]').click();
120
- }
121
- });
122
- </script>
123
- """
124
- )
125
-
126
- interface.launch()
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+
11
+
12
+ client = Groq(api_key="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")
13
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
+
15
+
16
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
+
18
+ def process_pdf_with_langchain(pdf_path):
19
+
20
+ loader = PyPDFLoader(pdf_path)
21
+ documents = loader.load()
22
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
23
+ split_documents = text_splitter.split_documents(documents)
24
+
25
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
26
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
27
+ return retriever
28
+
29
+ def scrape_google_search(query, num_results=3):
30
+
31
+ headers = {"User-Agent": "Mozilla/5.0"}
32
+ search_url = f"https://www.google.com/search?q={query}"
33
+ response = requests.get(search_url, headers=headers)
34
+ soup = BeautifulSoup(response.text, "html.parser")
35
+
36
+ results = []
37
+ for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
38
+ title = g.find('h3').text
39
+ link = g.find('a')['href']
40
+ results.append(f"{title}: {link}")
41
+ return "\n".join(results)
42
+
43
+ def generate_response(query, retriever=None, use_web_search=False):
44
+
45
+ knowledge = ""
46
+
47
+ if retriever:
48
+ relevant_docs = retriever.get_relevant_documents(query)
49
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
50
+
51
+ if use_web_search:
52
+ web_results = scrape_google_search(query)
53
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
54
+
55
+ chat_history = memory.load_memory_variables({}).get("chat_history", [])
56
+ context = (
57
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
58
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
59
+ )
60
+ if knowledge:
61
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
62
+ if chat_history:
63
+ context += f"\n\nChat History:\n" + "\n".join([f"User: {msg['content']}" for msg in chat_history])
64
+
65
+ context += f"\n\nYou: {query}\nParvizGPT:"
66
+
67
+ chat_completion = client.chat.completions.create(
68
+ messages=[{"role": "user", "content": context}],
69
+ model="llama-3.3-70b-versatile",
70
+ )
71
+ response = chat_completion.choices[0].message.content.strip()
72
+
73
+ memory.save_context({"input": query}, {"output": response})
74
+ return response, memory.load_memory_variables({}).get("chat_history", [])
75
+
76
+ def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
77
+ global retriever
78
+ if pdf_file is not None:
79
+ try:
80
+ retriever = process_pdf_with_langchain(pdf_file.name)
81
+ except Exception as e:
82
+ return f"Error processing PDF: {e}", []
83
+
84
+ response, chat_history = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
85
+ chat_history_display = "\n".join([f"User: {msg['content']}" if msg['role'] == 'user' else f"ParvizGPT: {msg['content']}" for msg in chat_history])
86
+ return response, chat_history_display
87
+
88
+ def clear_memory():
89
+ memory.clear()
90
+ return "Memory cleared!", ""
91
+
92
+ retriever = None
93
+
94
+ with gr.Blocks() as interface:
95
+ gr.Markdown("## ParvizGPT")
96
+ with gr.Row():
97
+ user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
98
+ with gr.Row():
99
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath")
100
+ enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
101
+
102
+ with gr.Row():
103
+ chat_history = gr.Textbox(label="Chat History", lines=10, interactive=False)
104
+
105
+ with gr.Row():
106
+ clear_memory_btn = gr.Button("Clear Memory")
107
+ submit_btn = gr.Button("Submit")
108
+
109
+
110
+ submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=[chat_history])
111
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=[chat_history])
112
+
113
+ gr.HTML(
114
+ """
115
+ <script>
116
+ document.addEventListener("keydown", function(event) {
117
+ if (event.key === "Enter" && !event.shiftKey) {
118
+ event.preventDefault();
119
+ document.querySelector('button[title="Submit"]').click();
120
+ }
121
+ });
122
+ </script>
123
+ """
124
+ )
125
+
126
+ interface.launch()