import time import logging import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain_core.vectorstores import InMemoryVectorStore from groq import Groq logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) client = Groq(api_key="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") embedding_model = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings") # Initialize in-memory vector store for chat history memory = InMemoryVectorStore() def process_pdf_with_langchain(pdf_path): try: loader = PyPDFLoader(pdf_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) split_documents = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(split_documents, embedding_model) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) return retriever except Exception as e: logger.error(f"Error processing PDF: {e}") raise def generate_response(query, retriever=None): try: knowledge = "" if retriever: relevant_docs = retriever.get_relevant_documents(query) knowledge += "\n".join([doc.page_content for doc in relevant_docs]) chat_history = memory.load_memory_variables({}).get("chat_history", "") context = "This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from KUT." if knowledge: context += f"\n\nRelevant Knowledge:\n{knowledge}" if chat_history: context += f"\n\nChat History:\n{chat_history}" context += f"\n\nYou: {query}\nParvizGPT:" # ابتدا یک پیام موقت نمایش داده شود response = "در حال پردازش..." retries = 3 for attempt in range(retries): try: chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": context}], model="deepseek-r1-distill-llama-70b" ) response = chat_completion.choices[0].message.content.strip() memory.save_context({"input": query}, {"output": response}) break except Exception as e: logger.error(f"Attempt {attempt + 1} failed: {e}") time.sleep(2) return response except Exception as e: logger.error(f"Error generating response: {e}") return f"Error: {e}" def gradio_interface(user_message, chat_box, pdf_file=None): global retriever if pdf_file is not None: try: retriever = process_pdf_with_langchain(pdf_file.name) except Exception as e: return chat_box + [("Error", f"Error processing PDF: {e}")] chat_box.append(("ParvizGPT", "در حال پردازش...")) response = generate_response(user_message, retriever=retriever) chat_box[-1] = ("ParvizGPT", response) chat_box.append(("You", user_message)) return chat_box def clear_memory(): memory.clear() return [] retriever = None with gr.Blocks() as interface: gr.Markdown("## ParvizGPT") chat_box = gr.Chatbot(label="Chat History", value=[]) user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True) clear_memory_btn = gr.Button("Clear Memory", interactive=True) pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1) submit_btn = gr.Button("Submit") submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box) user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box) clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) interface.launch()