# import gradio as gr # from groq import Groq # client = Groq( # api_key=("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"), # ) # def generate_response(input_text): # chat_completion = client.chat.completions.create( # messages=[ # { # "role": "user", # "content": input_text, # } # ], # model="llama3-8b-8192", # ) # return chat_completion.choices[0].message.content # iface = gr.Interface( # fn=generate_response, # inputs=gr.Textbox(label="ورودی" , lines=2, placeholder="اینجا یه چی بپرس... "), # outputs=gr.Textbox(label="جواب"), # title="💬 Parviz GPT", # description="زنده باد", # theme="dark", # allow_flagging="never" # ) # iface.launch() import gradio as gr from groq import Groq import time client = Groq(api_key="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") def generate_response(message, chat_history): chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": message}], model="llama3-8b-8192", ) bot_message = chat_completion.choices[0].message.content for i in range(0, len(bot_message), 10): yield chat_history + [(message, bot_message[:i + 10])] time.sleep(0.1) yield chat_history + [(message, bot_message)] with gr.Blocks() as demo: gr.Markdown("
زنده باد
") chatbot = gr.Chatbot(label="جواب") msg = gr.Textbox(label="ورودی", placeholder="اینجا یه چی بپرس... ", lines=1) msg.submit(generate_response, [msg, chatbot], chatbot) clear = gr.ClearButton([msg, chatbot]) demo.launch() # import gradio as gr # import torch # from transformers import AutoTokenizer, AutoModelForCausalLM # tokenizer = AutoTokenizer.from_pretrained("universitytehran/PersianMind-v1.0", use_fast=True) # model = AutoModelForCausalLM.from_pretrained( # "universitytehran/PersianMind-v1.0", # torch_dtype=torch.bfloat16 # ).to("cpu") # CONTEXT = ( # "This is a conversation with ParvizGPT. It is an artificial intelligence model designed by Amir Mahdi Parviz, " # "an NLP expert, to help you with various tasks such as answering questions, " # "providing recommendations, and assisting with decision-making. Ask it anything!" # ) # pretokenized_context = tokenizer(CONTEXT, return_tensors="pt").input_ids.to("cpu") # def generate_response(message, chat_history): # prompt = torch.cat( # [pretokenized_context, tokenizer("\nYou: " + message + "\nParvizGPT: ", return_tensors="pt").input_ids.to("cpu")], # dim=1 # ) # with torch.no_grad(): # outputs = model.generate( # prompt, # max_new_tokens=32, # temperature=0.6, # top_k=20, # top_p=0.8, # do_sample=True # ) # result = tokenizer.decode(outputs[0], skip_special_tokens=True) # response = result.split("ParvizGPT:")[-1].strip() # return chat_history + [(message, response)] # with gr.Blocks() as demo: # gr.Markdown("